2020 Volume 11 Issue 1

Phytomedicinal potential characterization of medical plants (Rumex nervosus

and Dodonaea viscose)

Abdulrahman Alasmari


Abstract

Many   pharmacological   and   Pharmacognostical   studies   about medicinal  plants  such  as  Rumex nervosus  and Dodonaea  viscose revealed  their  medicinal  actives  and  certain  nutrient  and  non- nutrient  substances  where  could  protect  and  prevent  the  human body    from    several    diseases. Several investigations on Rumex nervosus and Dodonaea viscose support their traditional use as drugs due to their medicinal actives against many diseases. Also,  they  attain  great  attention  in  the  present  world  due  to  the side effects of using many synthetic drugs on human life.

Key words: Rumex nervosus, Dodonaea viscose, phytomedicinal, plant description, beneficial human health


 

Introduction

Nature has endowed us with a great diversity of medically useful plants (Morilla and Demayo, 2019; Sargia et al., 2018; Saida et al.

2018). Several medicinal plants are used by mankind for its therapeutic activities since the beginning of human civilization.

80%  or  more  of  the  population  relies  on  traditional  medicine

(Ekor, 2014). Undesirable side effects of antibiotics and the emergence of uncommon infections forced scientists to look for new alternative antimicrobials depending on using natural plants and their extracts from different parts (Carlet et al., 2012). Herbal medicines are very important in our world as new alternative sources for health care due to medicinal criteria, more safety, low costs,   and   as   they   would   overcome   resistance   produced   by pathogens (Tapsell et al., 2006).

 

On the other hand, free radicals in such herbs are very important to healing technology. Antioxidant treatments have shown to facilitate the healing of many diseases. Also, a growing body of evidence  is  present  as  part  of  the  therapeutic  value  for  many herbals which could be explained by its antioxidant effects.

 

Our objectives of the present review are showing the importance of Rumex nervosus and Dodonaea viscose which could be provided as new alternative medicines for humans.

 

Description of Rumex nervosus (RN) and Donadonea viscose (DV)

Rumex nervosus(RN)

Rumex species  have  more  than  200  species  in  many  tropic  and sub-topic  regions.  Leaves are edible and stems are mainly used for    body    purifying    as    a    substituent    of    the    olive    tree. Rumex nervosus  is  the  most  common  species  which  has  many medicals substances such as chrysophanol, emodin, aloe-emodin, and rhein which have biological activities against many diseases (Wegiera et al., 2012).

 

Dodonaea viscosa (DV)

Dodonaea viscosa L.  is  a  small  tree  or  medium-sized  shrub  that grows  up  to  9  meters  tall  and  is  a  widespread  species  forming dense  populations.  It is distributed in tropical, sub-tropical and warm temperate regions.  It also develops purple leaves when grown in the direct light (Barkatullah and Ibrar, 2010; Muqaddas et al., 2018). Dodonaea viscosa L. is mainly used as a remedy for fever, gout, and rheumatism (Khurram et al., 2009). It belongs to family Sapindaceae  which  is  popularly  known  In  India,  as  a  liar  and vilayet Mehandi (Muthukumran et al., 2011).

 

Chemical    composition    of    Rumex nervosus    and

Dodonaea viscose

Rumex nervosus (RN) contains many flavonoids, anthraquinones, and gallic acid.  Rumex nervosus  leaves  are  used  to  treat  skin rashes and young leaves with tender shoots are eaten by Sheppard after  they  roasted  over  an  open  fire  to  reduce  the  acid  content (Orhan et al., 2009).

 

RN chemical composition analysis showed that it has many antioxidant,   anticancer,   and   antimicrobial   components   in   its leaves.  GC/MS analysis reveals have 28.35% Palmitoleic Acid and 25.37% Palmitic acid.  Its essential oil showed significant DPPH    radical    scavenging    activity    (94%)    in    100    μg/mL concentration. The oil has activity against staph aureus. RN crude extract   has   antioxidant   activity   and   its   chloroform   fraction provides activity against (MCF-7 and MDA-MB-231) cell lines (Chong, 2003; Quradha et al., 2019).

Infusions of stems or leaves have been used to heal sore throats; root  infusions  have  been  to  relieve  colds  (Patel  and  Coogan, 2008). Stems   and   leaves   have   been   used   to   treat   fever, rheumatism,  swellings,  and  aches,  seeds  have  been  used  for malaria, and leaves and roots could be used as an antispasmodic agent   as   a   painkiller   to   soothe   toothaches   and   headaches (Edeoga et al., 2005). The chemical composition of Dodonaea viscose (DV) illustrated that it has 23 flavones (Rani et al., 2009). Pharmacological activities of Rumex nervosus and Dodonaea viscose are traditional medicine  utilized  in  folklores  medicine  in  sub-tropic  regions against  several  fungal  skin  diseases  and  as  antiparasite, etc. Dodonaea viscosa leaves  powder  could  be  used  over  a  wound  in case  of  burns  and  scalds  and  hence  for  the  remedy  of  different skin   diseases   and   plays   an   efficient   role   in   inhibiting   the adherence of Candida albicansto oral epithelial cells (Pirzada et al., 2010).

 

 

Allelopathic    Potential    of    Rumex nervosus    and Dodonaea viscose

Many investigations on aqueous leaf extracts from bark, flowers, shoot   litter   and   mulches   revealed   they   reduce   germination, plumule   growth,   radical   growth,   fresh   and   dry   weight   of Pennisetum americanum  (L)  and  Skhyuman,  Setaria italica  (L), Phytomyza gymnostoma,  and  Sorghum  (Sorghum  vulgare  Pers. Depending on the soaking duration, the phytotoxicity of extracts was  determined  (48h).  Leaves also reported to be more toxic compared with bark and flowers. Hot extract inhibitory effect was more   than   aqueous   extract   obtained   at   normal   temperature. Rumex nervosus and Dodonaea viscose both have strong allelopathic potential and might need further investigations for insecticidal activities.  Rumex nervosus and Dodonaea viscose are allelopathic plants, capable of suppressing the germination and growth of various test species, and germination and growth were independently   affected. Rumex nervosus and Dodonaea viscose release allelopathic substances through water. The seedling stands within  the  thickets  and  its  vicinity  might  be  partially  due  to  its allelopathy (Barkatullah, and Ibrar, 2010; Muqaddas et al., 2018).

 

Anti-bacterial Activity of Rumex nervosus (RN) and

Dodonaea viscose (DV)

Rumex nervosus and Dodonaea viscose showed inhibitory effects against    many    pathogens    such    as    Staphylococcus    aureus, Micrococcus    luteus,    Escherichia    coli,    and    Pseudomonas aeruginosa.  Thin layer chromatograms of fractions were made and led to inhibition at different Rf values against Bacillus subtilis, Micrococcus   luteus,   Escherichia   coli,   Salmonella   typhi,   and Pseudomonas aeruginosa. Their Antibacterial has been proved against gram-positive or gram-negative bacteria (Khurram et al., 2009).

 

Anti-Diabetic Activity of Rumex nervosus (RN) and Dodonaea viscose (DV)

Diabetes mellitus has been considered a global disease over the last decade and has many characteristics of carbohydrate, fat and protein metabolism, affecting about 10% of the worldwide population. Several hypoglycemic agents were introduced in the last few years.  Glucose  tolerance  test  was  applied  to  induced diabetic  rats  administered  with  Rumex nervosus and  Dodonaea viscose  extracts. Extracts of aqueous ethanol showed significant protection and a decrease in blood glucose levels. The maximum reduction in blood glucose level of alloxan-induced diabetic rats at a dose of 250 mg/kg of body weight was observed after 3h.

Protections % given by aqueous ethanol and butanol extracts of Rumex nervosus and Dodonaea viscose were found to be 30 and 48%,   respectively.   The   significant   anti-diabetic   activity   was observed in extracts when compared with glibenclamide. Thus, it is  confirmed  that  the  root  juice  of  this  plant  can  be  used  in  the treatment of diabetes according to the traditional Indian medicinal systems (Muthukumran et al., 2011).

 

Antifungal   Activity   of   Rumex nervosus (RN) and Dodonaea viscose (DV)

Rumex nervosus and Dodonaea viscose    were    found    to    more significantly and effectively suppress the radial mycelial growth of   both Alternaria solani and Rhizoctonia solani. Radial mycelial growth    was    greatly    inhibited    in Alternaria solani using Rumex nervosus and Dodonaea viscose. In comparison to ethanol, methanol, ethyl acetate, and aqueous extracts, crude extract have been   found   to   be   more   effective   against   tested   fungi.   The chloroform extract has high inhibitory activity (50-90, 91 %) against fungi (Getie et al., 2010).

 

Anti-inflammatory Activity and Acute Toxicity

Rumex nervosus and Dodonaea viscose extract relieve inflammation. After 14 days of study on mice, it was found that there was no toxic symptom or mortality.  These results also supported    the    traditional    use    of    this    plant    in    relieving inflammation (Khalil et al., 2006).

 

Gastroprotective Effect

The aqueous and ethanol extracts of Rumex nervosus and Dodonaea viscose showed moderate activity when compared with that of the hexane extract (Arun et al., 2008).

 

Antioxidant

Hot water extracts possess the most potent antioxidant capacity by means of peroxidation reduction proved by spectrophotometer and   microplate   methods   despite   containing   lower   flavonoid levels.   Methanolic   extracts   of   Rumex nervosus and   Dodonaea viscose  showed  a  significant  and  much  effective  free  radical scavenging  activity  in  the  DPPH  assay  and  hence  provided prophylaxis   against   various   diseases   such   as   heart   diseases, arteriosclerosis,  and  cancers  (Thring  et  al.,  2007;  Brand  et  al., 1995).

 

Rumex nervosus and Dodonaea viscose genome

Rumex nervosus genome

Rumex nervosus genome organized into chromosomes that provide structure   for   genetic   linkage   groups   and   allow   hereditary information   to   be   replicated,   transcribed,   and   transmitted. Genome  size  is  diverse,  with  a  2350-fold  range  from  63  to 149000   Mb.   A   combination   of   sequence   analysis,   genetic mapping, and molecular cytogenetic processes with comparative study,  and  elucidate  the  exact  nature  of  chromosome  evolution events at all timescales, from the plant kingdom base to the intra- specific  or  hybridization  events  associated  with  recent  plant breeding.

According to Al Yahya et al.  (2018),  GC–MS  chromatogram analysis  of  methanol  extracts  showed  that  there  were  a  lot  of phytocomponents  that  existed  in  the  roots,  stems,  leaves,  and flowers  of  R.  nervosus of seven  different  populations.  All the chemical compounds had been identified and characterized with their retention time, peak area %, molecular weight, and chemical formula where dendrogram upon total phytochemical ingredients of various parts of extract separated the seven different locations into six clusters at 14.7 linkage distance (Fig. 1 and Table 1). The first   cluster   includes   Rejalalmae   population.   Second   cluster contains  Billahmir  and  Tabab  populations  (formed  one  clade), while Abha,  Bahatrabiea,  Alssawda,  and Alothrban  populations, each of them composed a separate cluster. Binary double zeros- Simple  matching  revealed  the  highest  similarity  value  between Billahmir and Tabab populations (85.4%) followed by Billahmir and  Abha  populations  (81.0%),  while  the  similarity  between Rejalalmae and Alssawda populations (48.1%) was very less.

 

Fig. 1: Dendrogram constructed from total phytocomponents in root, stem, leaf, and flower methanol extracts of seven populations of R. nervosus (Al Yahya et al., 2018).

 

Table  1  Binary  double  zeros-Simple  matching  among  seven various     populations     of     R     nervosus based     on     total phytocomponents  in  root,  stem,  leaf,  and  flower  methanol extracts (Al Yahya et al., 2018).

 

 

Genetic variations among the studied locations and variations in physiological and environmental factors of Rumex nervosus was observed along with the altitudinal gradient (Hansen et al., 2005).

 

The therapeutic strength of bioactive constituents in many plants such as Rumex nervosus could be influenced by several factors, such as time of collection, location of plant species, and storage conditions. Previous factors could be mainly responsible for the contrasting findings (Matu and Van, 2003). Phytocomponents and vitamins  (B1B2B12,  and  folic  acid)  were  investigated  in  the methanol  extracts  of  R.  nervosus at  seven  different  locations  by using GC–MS and HPLC analysis and revealed variations in the amount and type of active ingredients and vitamins at plant parts and   different   populations.   The   yielded   differences   could   be attributed  to  many  factors,  such  as  the  different  stages  of  the plant,    climate    and    ecological    conditions,    soil    type,    and geographical  sites  (Marzoug  et al., 2011).  Some earlier reports revealed the influence of genetic change on biochemical synthesis (Wink, 1994; Nicolle et al., 2004), and noticed that there were 38, 37, 33, and 31 phytochemicals in roots, stems, leaves, and flowers, respectively. These secondary metabolites isolated from methanol    extract    and    their    derivatives    possess    different pharmacological and biological activities; for example, Oleic acid was found to be efficient in type II diabetes and responsible for the hypotensive effect, weight loss and prohibits ulcerative colitis (Terés et al., 2008).

 

Dodonaea viscosa   genome

The genome of plant chloroplast (cp) is a strongly conserved structure, advantageous for evolution and systematic studies. Due to the high-performance sequencing technology, full cp genome sequences have been recorded at present.  There is, however, no complete chloroplast genome of the Dodonaea genus recorded earlier.    To    better    understand    the    molecular    basis    of Dodonaea viscosa chloroplast, the entire genome was sequenced using Illumina sequencing technology.  The  whole  length  of  the cp  genome  is  159,375  base  pairs  (bp),  with  a  pair  of  inverted repeats (IRs) of 27,099 bp separated by a large single copy (LSC) of  87,204  bp,  and  small  single  copy  (SSC)  of  17,972  bp.  The study of the annotation identified a total of 115 unique genes, 81 of  which  were  protein-coding, 30 tRNA  and  four  genes  of ribosomal RNA (Fig2). Comparative genome analysis with other closely related members of Sapindaceae showed conserved gene order in the regions of inverted and single copies (Fig.3). Typical chloroplast genome size ranges from 72 to 217 kb, consisting of a small single copy (SSC) and a large single copy (LSC) separated by    a    pair    of    inverted    repeats    (IRs)  (Sugiura.    1992; Tangphatsornruang et al.  2010).  Additionally,  chloroplast  DNA sequences have been successfully used to study the phylogenetics and  phylogeography  of  angiosperms  at  lower  taxonomic  stages (Shaw et al. 2014).

 

Fig. 2 Gene map of the Dodonaea viscosa chloroplast genome. Genes lying outside of the circle are transcribed clockwise, whereas genes inside the circle are transcribed counterclockwise (Saina et al., 2018).

 

Colored bars indicate different functional groups. The dark gray area in the inner circle corresponds to GC content while the light gray corresponds to the AT content of the genome. IR (inverted repeat), LSC (large single copy), and SSC (small single copy) are indicated (Saina et al., 2018).

 

Due  to  RNA  editing,  the  translation  initiation  codons  ACG  and GUG may be restored to the standard start codon AUG (Kuroda et al. 2007; Takenaka et al. 2013), therefore the same process may have  occurred  for  the  genes  identified.  The  presence  of  several SSR  motifs  in  the  genome  of  chloroplast  provides  valuable sources   for   the   design   of   primers   for   phylogeography   and population structure.

 

 

 

Fig. 3 MAUVE alignment of four Sapindaceae species chloroplast genomes and Boswellia sacra (out-group) (Sainab et al., 2018).

 

Within each alignment, local collinear blocks are represented by blocks of the same color linked by species-level lines or provide useful genomic information in this genus for further population genetics and phylogenetic relationships. In most cp genomes, the ndhF  gene  overlapped  with  the  ycf1  pseudo gene  but  not  in  S. Mukorosi,  and  D.  Dyeriana.  As shown in Fig.  4, minor shifts occurred at IR/LSC borders, e.g.  Rpl22 crossed the LSC/IRA border at D.  Visco, A.  Gray, A.  David, A.  Buergeriano, A. Morrisonense and two species of Dipteronia, with the pseudo- fragment duplicated in the IRb/LSC region. Remarkably, the SSC region of D. viscosa was smaller than those of other species while the trnH-GUG sequence was located in the LSC region of all the genomes.

 

Fig. 4 Dot plot of genome sequences for chloroplast published by

D. viscosa and S. mukorossi (Saina et al., 2018)

 

 

 

Fig. 5 The percentage of gene identification plots of the genomic regions in D. viscosa and S. mukorossi (Saina et al., 2018).

 

A  homogeneous  group  of  all  species  of  Acer  and  Dipteronia (subfamily  Aceroideae)  was  obtained  with  optimum  bootstrap value  (100%)  (Fig.  4). Similarly, Dipteronia species formed a close relationship with S. mukorossi and D. viscosa with a strong bootstrap value (Fig.  5).  Based  on  Bayesian  inference  the  ML bootstrap  supports  (BS)  the  BI  posterior  probabilities  (PP),  and all  nodes  were  strongly  supported  with  values  100%  and  90% respectively.  The  average  Ks  values  between  the  two  closely related species were 0.1770, 0.0525 and 0.2191 for the LSC, IR and  SSC  regions  respectively  with  an  average  Ks  of  0.1662 across all regions. There were higher Ks values in most genes in all  regions,  with some  genes  revealing  lower Ks  values  such  as ycf3, rps11, rps4, rps2, rpl36, rpl33, clpP, atpF, psaA, petN, rbcL, psbT, psbL, psbJ, psbI, psbF, psbE (LSC), only gene rps15 (SSC) and all the genes in IR region except ycf1 and rpl22 (Fig.6).

 

 

 

Fig. 6 Simple sequence repeats (SSRs) in the nine Sapindaceae chloroplast genomes (Saina et al., 2018)

 

Fig. 7 Comparison of IR, LSC and SSC border regions among nine genomes of Sapindaceae cp (Saina et al., 2018).

 

Rumex nervosus   and   Dodonaea   viscose   leaves   as natural antioxidants

 

Rumex nervosus has been used as antimicrobial, antioxidant, anti- inflammatory,    anti-cancerous,    carbohydrase    inhibition,    and cytotoxic (Harshaw et al., 2010; Shiwani et al., 2012).

Also, Dodonaea viscosa could be used against variable pathogen species   due   to   its   many   essential   phytochemicals   such   as glycosides of quercetin and isorhamnetin (Muqaddas et al., 2018),

 Alkaloids,   flavonoids,   saponins,   steroids,   triterpenoids,   and phytosterols (Danjuma et al., 2012, Prakash et al., 2012; Lawal and Yunusa, 2013).

 

Fig. 8 Phylogenetic relationships based on full genome sequences of nine members of the Sapindaceae and two members of the out group species (Spondiastu berosa and Boswellia sacra) with maximum likelihood method (Saina et al., 2018).

 

Fig. 9. Comparison of non-synonymous (Ka) and synonymous (Ks) substitution rates and Ka/Ks ratio between D. viscosa and S. mukorossi (Saina et al., 2018)

 

Diverged at a slower rate compared to the LSC and SSC regions (Cho et al.  2015; Fu et al.  2016).This  study  has  provided  the complete  sequence  of  cp  genome  of  D.  viscosa,  the  first  cp genome    under    the    Dodonaeoideae subfamily. Comparative analyzes  among  Sapindaceae  species  revealed  that  the  available cp  genomes  of  species  within  this  family  are  well  conserved  in terms of the overall structure (Fig. 9).

 

Rumex nervosus and Dodonaea viscose leaves as anti- microorganisms

 

Plant extract screening and products for antimicrobial activity showed the floras are new sources of anti-infection (Costa et al., 2008). Rumex nervosus extract showed an inhibitory effect on Gram-positive   bacteria.   On   the   other   hand,   gram-negative bacteria   such   as   P.   aeruginosa were   more   sensitive   to   agar diffusion.  The ethanol extract inhibited the growth of many pathogenic   microorganisms   while   the   hexane   extract   had   a relatively low effect on pathogens such as gram-negative bacteria. The  extracts  inhibited  the  performance  of  fungi  such  as  as  C. albicans. R. nervosus is considered as a new natural antimicrobial agent (Al-Asmari et al., 2015).   Ethanol,   methanol,   acetone, diethyl ether, and hexane extracts of leaves of Rumex nervous had antibacterial activity against 6 pathogenic bacteria (Tedila and Assefa, 2019).

 

 

Dodonaea viscosa was used   as  an  antibacterial  agent  against  4 gram-positive  (Bacillus  subtilisBacillus  cereusMicrococcus luteus, and Staphylococcus aureus), and 3 gram-negative bacteria (Escherichia     coli,     Salmonella     typhi,     and     Pseudomonas aeruginosa) (Khurram et al., 2009).

 

Antibacterial activity from dichloromethane and acetone fractions of  DV  (leaf  powder)  had  positive  effects  on  many  pathogen organisms such as Staphylococcus aureus, Enterococcus faecalis, Escherichia   coli,   and   Pseudomonas   aeruginosa (Teffoet   et al.,2010).    It    was    and    used    as    an    antifungal    agent    against Trichophyton rubrum    which    causes    many    skin    problems (Pirzadaet et al., 2010).

 

Rumex nervosus   and   Dodonaea   viscose   leaves   are beneficial for human health

Al-Naqeb   and   Taj   Al-   Deen   (2017)   studied   the   antiobesity potential  of  Rumex nervosus Vahl  leaves  against  high  fat  diet- induced  obesity  in  female  rats.  The  administration  of  a  high-fat diet  in  rats  produced  hyperglycemia  and  hyperlipidemia,  which led  to  an  increase  in  body  weight  compared  to  control  rats.  In high-fat   diet,   treated   rats   with   the   Rumex nervosus Vahl   leaf powder  mixed  with  the  diet  at  10%  of  the  diet  reduced  body weight and gave signs of recovery in body weights up to normal control   group   level.   Treatment   of   high-fat   diet   rats   with Rumex nervosus Vahl leaf powder did not tend to affect the food or water intake of rats during the 8 weeks of treatment.  After  8 weeks of  treatment,  the  high-fat diet that   received Rumex nervosus Vahl  showed  prevention  effect  on  high  fat  diet- induced hyperglycemia and hyperlipidemia in female Albino rats, with no toxic effect.

 

The  plant  Rumex nervosus is  abundantly  found  in  the  Southern region  of  Saudi  Arabia.  It contains flavonoids, anthraquinones, and gallic acid. The leaves of R. nervosus are used to treat the skin rashes and the young leaves with the tender shoots are eaten by the Shepard after they are roasted over an open fire to reduce the acid content.  The  charcoal  made  after  burning  of  the  stem  is mixed  with  egg  yolk  to  be  used  as  a  nursing  for  the  burns  and sometimes butter is added to save from flaking and drying of the burn wound.  The genus Rumex includes many edible plants, and their    medicinal    importance    was    investigated    by    many investigators   toward   several   bacterial,   viral,   and   chlamydial.

Infections (Abu-Rabia,       2005;       Orhanet       et al. 2009). Teklehaymanot et al. (2007) reported the use of this plant as anti- dysentery   medication,   stomachache   cure,   and   effective   wart medication. The methanolic extract of the root and leaves of this plant   was   also   found   to   be   effective   in   the   treatment   of helminthiasis  (Raju  and  Yesuf,  2004)  and  diarrhea  induced  in mice  (Asad et  al.,  2004).  Other  plants  belonging  to  the  genus Rumex are  also  used  as  anti-tumor  agents  in  different tumor  cell lines  from  colon,  ovary,  melanoma,  breast,  and  central  nervous system (Zhang et al., 2012).

 

It  has  been  reported  that  the  Dodonaea  viscose  leaf  extract  has antibacterial activity against Staphylococcus aureus, Micrococcus luteus,   Escherichia   coli, and   Pseudomonas   aeruginos. Other pharmacological   activities   include   antinociceptive,   antiulcer, wound healing, antioxidant, anti-inflammatory, neurological, ant- diabetic, anti-diarrheal, antihyperlipidemic and hepato-protective activities (Al-Asmari et al., 2013).

 

The ethyl acetate methanolic extract of Dodonaea viscosa leaves was  evaluated  for  ant-diabetic  efficacy  after  oral  administration of  extracts  at  different  doses  (200  and  400mg/kg  bw)  in  STZ- induced  diabetic  rats.  Various  biochemical  (glucose  tolerance, fasting  glucose  level,  glycogen  level,  and  total  cholesterol)  and enzymatic   (MDA,   GSH,   GOT,   and   GPT)   parameters   were assessed. These results indicate that Dodonaea viscosa methanolic extract possesses antidiabetic effect in experimental diabetic rats.  Methanolic  extracts  produced  a significant  effect  in  normal  rats  after  6h  of  administration.  It showed improvement at both doses (Meenu et al., 2011).

 

The   hydroalcoholic   extract   (HAE)   of   the   Dodonaea viscosa leaves, when given orally at a dosage of 300 mg/kg, significantly inhibited the paw edema induced by the carrageenin the injection. There was no toxicity effect in the mice up to 5000 mg/kg p.o. of the extract. This result has supported the use of D. viscosa leaves ethanol extract to relieve inflammation. After 14 days of study in mice, it was found that there was no toxic symptom or mortality. These  results  also  supported  the  traditional  use  of  this  plant  in relieving inflammation (Khalil et al.,2006).

 

Conclusion

In recent years ethnomedicinal studies received much attention on natural resources to light the numerous medicines, especially of plant origins such as Rumex nervosus and Dodonaea viscose which needs    evaluation    on    modern    scientific    lines    such    as phytochemical   analysis,   pharmacological   and   clinical   trials. Phytochemical   and   pharmacological   studies   on   such   plants support  its  traditional  uses  and  may  be  proved  to  be  useful  for clinical evaluation and development of drugs. Rumex nervosus and Dodonaea  viscose  are  very  rich  sources  of many phyto components,  vitamins  (B1B2B12,  and  folic  acid), and  flavonoids  as  natural  antioxidants,  antibacterials  and  are beneficial      for      human      health.      Different      extracts      of Rumex nervosus and Dodonaea viscose (i.e., root, stem, leaf, and flower extracts) of R.  nervosus.  Cloud be used as anti-bacterial,

 

antitumor,  and  antioxidant,  and  antivirals  and  many  parts  of Rumex nervosus and Dodonaea  viscose  could  be  used  as  a  new alternative  source  for  treating  various  diseases  and  provides justification   support   to   the   plant’s   traditional   use   against microbial infections. Different parts of Rumex nervosus and Dodonaea viscose can be used in pharmacological and biological activities.

 

References

 

Abu-Rabia,  A.  (2005).  Herbs  as  a  food  and  medicine  source  in Palestine.Asian Pac J Cancer Prev;6:404-7.

Al    Yahya    N.    A.    Alrumman    S.    A.    &Moustafa    M.    F. (2018).Phytochemicals   and   Antimicrobial   Activities   of Rumexnervosus   Natural   Populations   Grown   in   Sarawat Mountains, Kingdom of Saudi Arabia.Arabian Journal for Science and Engineering, 43:3465–3476

Al-Asmari,  A.K.,  Al  Otaibi,K.E.,  Al-Omani,  S.  &Athar,  M.T. (2013).   An   updated   phyto-pharmacological   review   on medicinal            plant            of            Saudi            Arabia- DodonaeaviscoaLinn.American     Journal     of     Research Communication, 1(12): 519-531

Al-Asmari,   A.K.,   Siddiqui,   Y.   M.,   TanwirAthar,   Md.,   Al- Buraidi1,    A.,    Al-Eid,    A.    S.&Horaib,    G.B.    (2015). Antimicrobial activity of aqueous and organic extracts of a Saudi    medicinal    plant:    Rumexnervosus,    Journal    of Pharmacy AndBioallied Sciences, 7(4):1-4

Al-Naqeb,   G.   &Taj   Al-   Deen,   A.   (2017).   The   effect   of RumexnervosusVahl    leaves    on    high    fat    diet-induced hyperglycemia and hyperlipidemia in albino rats, 1(2): 80-

83.

Arun    M,    &Asha    VV,    (2008).Gastroprotective    effect    of Dodonaeaviscosa  on  various  experimental  ulcer  models, Journal of Ethnopharmacology, 118, 460–465.

Asad,   M,   Getachew,   A,   &Ahmad,   M.   (2004).Antidiarrheal activity of methanolic extract of Rumexnervosus. J. Pharm Res;3:1-5.

Barkatullah,    F.&Ibrar,    M.    (2010).Allelopathic    potential    of

Dodonaeaviscosa (L.) jacq, pak. j. bot., 42(4) , 2383-2390. Brand  WW,  Cuvelier  HE,  &Berset  C,  (1995).  Uses  of  a  free

radical  method  to  evaluate  antioxidant  activity,  Food  Sci

Tech, 82,,25-30.

Carlet,  J.,  Jarlier,  V.,  Harbarth,  S.,  Voss,  A.,  Goossens,  H.

&Pittet,  D.  (2012).Ready  for  a  world  without  antibiotics. The    pensieres    antibiotic    resistance    calls    to    action. Antimicrob. Resist. Infect. Control. 1, 11

Cho KS,  Yun  BK,  Yoon  YH  et al  (2015) Complete  chloroplast genome         sequence         of         tartary         buckwheat (Fagopyrumtataricum)   and   comparative   analysis   with common     buckwheat     (F.     esculentum).     PloS     One,

10:e0125332.

Chong  LJ.  (2003).  History  of  Herbal  medicine.Chong’s  Health care enterprise.INC.40IN.Garfield Ave, Suit 1, Alhamba, C A 91801 USA.

Costa  ES,  Hiruma-Lima  CA,  Lima  EO,  Sucupira  GC,  Bertolin AO,  Lolis  SF,  Andrade  FDP,  Vilegas  W,  &Souza-Brito ARM  (2008).  Antimicrobial  activity  of  some  medicinal

 

 

 

plants   of   the   Cerrado,   Brazil.Phytotherapy   Research

22:705-707.

Danjuma, L. ,Dauda, M.M. &Wada, T.D. (2012). A Study of the Phytochemical  Properties  and  Synergistic  Action  of  Leaf Extracts  of  Dodoneaviscosa  Linn,  Annonacomosus  (Linn) Merr       Peel       and       Citrus       Senensis       Peel       on Aeromonashydrophila  and  Salmonella  Species.  J  Nat  Sc Res. 2: 16-21.

Edeoga  OH,  Okwu  ED  &  Mbaebie  OB.  (2005).  Phytochemical constituents   of   some   Nigerian   medicinal   plants.Afr.J Biotech. 4(7):685-688.

Ekor,  M.  (2014).  The  growing  use  of  herbal  medicine:  Issues related  to  adverse  reactions  and  challenges  in  monitoring safety. Front. Pharmacol., 4, 1-10.

Fu   PC,   Zhang   YZ,   Geng   HM   et   al   (2016)   The   complete chloroplast   genome   sequence   of   Gentianalawrenceivar. farreri  (Gentianaceae)  and  comparative  analysis  with  its congeneric species. PeerJ 4:e2540.

Getie  M,  Gebre-Mariam  T,  Rietz  R,  Ho¨hn  C,  Huschka  C, Schmidtke    M,    Abate    A,&    Neubert    RHH.    (2003). Evaluation   of   the   anti-microbial   and   anti-inflammatory activities    of    the    medicinal    plants    Dodonaea viscosa, Rumexnervosus and  Rumex abyssinicus.Fitoterapia  74:139–

143.

Hansen, E.H.; Schäfer, T.; Molin, S.&Gram, L. (2005). Effect of environmental     and     physiological     factors     on     the antibacterial  activity  of  Curvulariahaloperoxidase  system against  Escherichia  coli.  J.  Appl.  Microbiol.  98(3),  581–

588.

Harshaw  D,  Nahar  L,  Vadla  B,  &Sarker  SD.  (2010).Bioactivity of Rumexobtusifolius(Polygonaceae).Arch     Biol      Sci.

62:387–392.

Khalil NM, Serotto JS, &Manfron MP.(2006). Antiinflammatory and   acute   toxicity   of   Dodonaea viscosa.Fitoterapia,   77:

478-480.

Khurram,  M,  Khan,  MA,  Hameed,  A,  Abbas,  N,  Qayum,  A,

&Inayat,      H      (2009)      Antibacterial      activities      of Dodonaeaviscosa        using        contact        bioautography technique.Molecules 14(3): 1332-1341.

Kuroda  H,  Suzuki  H,  Kusumegi  T  et  al  (2007)  Translation  of psbC  mRNAs  starts  from  the  downstream  GUG,  not  the upstream AUG, and requires the extended Shine–Dalgarno sequence   in   tobacco   chloroplasts.   Plant   Cell   Physiol

48:1374–1378.

Lawal,    D.&Yunusa,    I.    (2013).DodoneaViscosa    Linn:    Its Medicinal, Pharmacological and Phytochemical Properties. International  Journal  of  Innovation  and  Applied  Studies.

2(4): 477-483.

Marzoug,   H.N.B.;   Romdhane,M.;   Lebrihi,   A.;Mathieu,    F.; Couderc,         F.;         Abderraba,         M.&Bouajila,         J. (2011). Eucalyptus       oleosaessential       oils:       chemical composition and antimicrobial and antioxidant activities of the  oils  from  different  plant  parts  (stems,  leaves,  flowers and fruits). Molecules 16(2), 1695–1709.

Matu, E.N.&Van, J.: (2003). Antibacterial and anti-inflammatory activities   of   some   plants   used   formedicinal   purposes inKenya. J. Ethnopharmacol, 87(1), 35–41.

 

Meenu    J,    Sunil    S.    &Manoj    K.    (2011).    Evaluation    of antihyperglycemic  activity  of  Dodonaeaviscosaleaves  in normal and STZ diabetic rats. Int J Pharm PharmSci, 3(1):

69-74.

Morilla, L. J. G. &Demayo, C. G. (2019). Medicinal Plants Used by  Traditional  Practitioners  in  Two  Selected  Villages  of Ramon Magsaysay, Zamboanga Del Sur. Pharmacophore,

10(1), 84-92.

Muqaddas,  R.  A.,  Ayesha  T.  &Farwa  N.  (2018).  Historical Origin,  Chemical  Constituents  and  Therapeutic  Potentials of   Sanatha   (Dodonaea   viscose)   –   A   Brief   Review, International    Journal    of    Chemical    and    Biochemical Sciences, 14, 48-54

Muthukumran     P,     HazeenaBegumand     V,&Kalaiarasan     P. (2011).Anti-Diabetic activity of Dodonaeaviscosa (L) Leaf Extracts, 3(1), 136-139.

Nicolle,  C.;  Simon,  G.;  Rock,  E.;  Amouroux,  P.&Rémésy,  C. (2004).  Genetic  variability  influences  carotenoid,  vitamin, phenolic,  and  mineral  content  in  white,  yellow,  purple, orange,   and   dark-orange   carrot   cultivars.   J.   Am.   Soc. Hortic. Sci. 129(4), 523–529.

Orhan,  I,  Deliorman-Orhan,  D,  &Ozcelik,  B.  (2009).Antiviral activity   and   cytotoxicity   of   the   lipophilic   extracts   of various    edible    plants    and    their    fatty    acids.Food Chem;115:701-5.

Patel M &Coogan MM. J (2008).Ethnopharmacol.; 118:173- 176

Pirzada, AJ, Shaikh, W, Usmanghani, K, &Mohiuddin, E (2010) Antifungal  Activity  of  DodonaeaViscosaJacq  extract  on pathogenic  fungi  isolated  from  super  ficial  skin  infection. Pak. J. Pharm. Sci 23(3): 337-340.

Prakash,   N.U.,   Selvi,   C.,   Sasikala,   V.,   Dhanalakshmi,   S.

&Prakash, S.B.U. (2012).Phytochemistry and Bio-Efficacy of a weed, Dodonaeaviscosa.Int J Phar Pharma Sci. 4(2):

509-512.

Quradha,  M.M.,  Khan,  R.,  Rehman,  M.  &Abohajeb,  A.  (2019).

Chemical     composition     and     in     vitro     anticancer, antimicrobial and antioxidant activities of essential oil and methanol  extract  from  RumexnervosusNatural  Product Research, 33(17):2554-2559

Raju,   NJ   &Yesuf,   EA.   (2004).Evaluation   of   anthelmintic activities of Rumex abyssinicusjacq and Rumex nervosus vahl.(Polygonaceae).  Int  J  Pharm  Sci  Rev Res;5:55-7.

Rani,  MS,  Rao,  SP,  Mohan,  K  (2009)."Dodonaeaviscosa  Linn" An overview.J Pharmaceut Res Health Care 1: 97-112.

Saida,  K.,  Sofiane,  K.  &Amel,  B.  (2018).  Phytochemical,  Free Radical  Scavenging  and  Antimicrobial  Activities  of  the Maize   Stigmas,   Collected   of   AinMlila   (East   Algeria). World Journal of Environmental Biosciences, 7(4), 35-40.

Saina  JK,  Gichira  AW,  Li  ZZ,  Hu  GW,  Wang  QF,  &Liao  K. (2018).  The  complete  chloroplast  genome  sequence  of Dodonaeaviscosa: Comparative and phylogenetic analyses. Genetica. 146(1):101-13.

Sargia, B., Singh, N., Gupta, L., Gahlot, K., Gulati, T. &Hasija, Y.  (2018).  MED-PDB:  An  online  database  of  medicinal plants.   Journal   of   Advanced   Pharmacy   Education   & Research, 7(4), 204-207.

 

Shaw  J, Shafer HL,  Leonard OR et al  (2014) Chloroplast DNA sequence    utility    for    the    lowest    phylogenetic    and phylogeographic  inferences  in  angiosperms:  the  tortoise and the hare IV. Am J Bot 101:1987–2004.

Shiwani   S,   Singh   NK,   &Wang   MH.(2012).   Carbohydrase inhibition  and  anti-cancerous  and  free  radical  scavenging properties along with DNA and protein protection ability of methanolic  root  extracts  of  Rumexcrispus.Nutr  Res  Pract.

6:389–395.

Sugiura M (1992).The chloroplast genome.Plant MolBiol19:149–

168.

Takenaka  M,  Zehrmann  A,  Verbitskiy  D  et  al.  (2013).  RNA

editing in plants and its evolution.Annu Rev Genet 47:335–

352.

Tangphatsornruang  S,  Sangsrakru  D,  Chanprasert  J  et  al  (2010) The              chloroplast     genome     sequence     of     mungbean (Vignaradiata)        determined        by        high-throughput pyrosequencing:  structural  organization  and  phylogenetic relationships. DNA Res 17:11–22.

Tapsell, L. C., Hemphill, I., Cobiac, L., Patch, C. S., Sullivan, D.

R.,&Fenech,   M.   (2006).   Health   benefits   of   herbs   and species: the past, the present and the future. Med. J. Aust.,185, 54-524.

Tedila,  H.  &Assefa,  A.  (2019).In  vitro  antibacterial  activity  of Rumexnervosusand  Clematis  simensisplants  against  some bacterial     human     pathogens,     African     Journal     of Microbiology Research, 13(1): 14-22,

Teffo, L.S. (2006). Nutritional and medicinal value of the edible stinkbug, EncosternumdelegorgueiSpinola consumed in the Limpopo  Province   of  South  Africa   and  its  host  plant

 

DodonaeaviscosaJacq.   var.   angustifolia.   University   of

Pretoria.

Teffo,  LS,  Aderogba,  MA  &Eloff,  JN  (2010)  Antibacterial  and antioxidant  activities  of  four  kaempferol  methyl  ethers isolated  from  DodonaeaviscosaJacq.var.  angustifolia  leaf extracts. South African Journal of Botany 76(1): 25-29

Teklehaymanot,   T,   Giday,   M,   Medhin,   G,   &Mekonnen,   Y. (2007).Knowledge  and  use  of  medicinal  plants  by  people around DebreLibanos      monastery      in      Ethiopia.J. Ethnopharmacol 111:271-83.

Terés,  S.;  Barceló-coblijn,G.;  Benet,  M.;Alvarez,  R.;  Bressani, R.; Halver, J.E.&Escribá, P.V. (2008). Oleic acid content is responsible for the reduction in blood pressure induced by olive oil. Proc. Natl. Acad. Sci. 105(37), 13811–13816.

Thring TSA, Springfield EP, &Weitz FM, (2007). Antimicrobial activities of four plants species from the Southern Overberg region of South Africa, African J. of Biotech, 6 (15), 1779-

1784.

Wegiera  M,  Smolarz  DH,  &Kocka  BA  (2012).RumexL.  species induce   apoptosis   in   1301,   EOL-1   and   H-9   cell   lines. ActaPoloniaePharmaceutica 69(3):487-499.

Wink,   M.&   Carey,   D.B.,   (1994).Variability   of   quinolizidine alkaloid  profiles  of  Lupinus  argentous  (Fabaceae)  from North America. Biochem.Syst. Ecol. 22(7), 663–669.

Zhang, H, Guo, Z, Wu, N, Xu, W, Han, L, &Li, N. (2012).Two novel    naphthalene    glucosides    and    an    anthraquinone isolated   from   Rumexdentatusand   their   antiproliferation activities in four cell lines. Molecules, 17:843-50

INDEXING
+ Pubmed Central, DOAJ, SCIRUS, BiologyBrowser, Chemical Abstracts, CABI, Intute catalogue, Science Central, EBSCOhost databases, Google Scholars, Genamics JournalSeek, Open J gate, Ulrich's, ResearchGate and many more.

J BIOCHEM TECH
J BIOCHEM TECH
Journal of Biochemical Technology is a peer reviewed International Journal published by the Sevas Publishing on behalf of the Biochemical Technology Society, a Registered Charity Organization from India

AREA OF INTEREST
AREA OF INTEREST
Areas of high interest, cover new advances in enzymatic and protein mechanims; applied molecular genetics and biotechnology; genomics and proteomics; metabolic; medical, environmental, food and agro biotechnology.

FOCUS AND SCOPE
FOCUS AND SCOPE
Journal Of Biochemical Technology” Provides A Medium For The Rapid Publication Of Full-Length Articles, Mini-Reviews Of New And Emerging Products And Short Communications On All Aspects Of ...

Publish with us

Call for papers

Issue 4 Volume 11 - 2020

Publishing steps

1.Prepare
your paper
2.Submit
and revise
3.Track
your research
4.Share
and promote
This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge. Keywords include, Biochemical Research: Endo/exocytosis, Trafficking, Membrane Biology, Cell Migration, Cell-Matrix Organelle Biogenesis, Cytoskeleton Proteolysis, Cell Death, Cell Cycle, Cancer, Cell Growth/Death, Differentiation, Drug Targets, Gene Therapy, Models of Disease, Proteomics, Stem Cells, Bioenergetics, Mitochondria, Free Radicals, Redox Signaling, Ion Transport/Channels, Oxidative