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Abstract 

The Thomas-Fermi energy density formalism is employed to study the binding energy of 230-238U Uranium isotopes. Total binding 
energies of deformed 230-238U isotopes are studied considering the quadrupole β2 and the hexadecapole β4 deformation parameters. The 
total Thomas-Fermi energy is minimized with respect to deformation in order to obtain the accurate binding energies of the 230-238U 
isotopes. Calculated binding energies using the present studies are compared with the available experimental data. Well agreement 
achieved between the calculated and the experimental data. Difference between the calculated average binding energies and experimental 
data was obtained less than 0.01 MeV. 
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Introduction 

A fundamental aspect of theoretical nuclear physics is the study of the structure of finite nucleiin terms of the nucleon-nucleon 
interaction. The binding energy is proof for the stability of everyfinite systems such nuclei. Initial attempts to study nuclear binding 
energy and its stability werecarried out using macroscopic approaches such as the semi-empirical liquid drop model (LDM) (Bao-Qiu 
and et al, 2004) and semi-classical Thomas-Fermi energy density functional model (TFEDFM) (Centelles and et al, 2007; Mayers and et 
al, 2009). In theLDM, the binding energy and the mass of a nucleus can be written as the summation of adjustableparameters 
(coefficients of the volume energy, the symmetry energy, the incompressibility and thesurface energy). The LDM describes very well the 
average trends of nuclear binding energy (Mackie. And et al, 1977; Audi & Wapstra, 1993). These coefficients can be calculated by 
fitting to the experimentally known masses of some nuclei.Quantum mechanical microscopic models such as the Hartree-Fock mean 
field (Stone, 2005) and the relativistic Dirac-Bruckner-Hartree-Fock models, DBHF, (Sammarruca and et al, 2010; Van Giai and et al, 
2010) with suitable potential have also been employed to study the properties and structure of the finite nuclei. The mean field Hartree-
Fock model uses of the nucleons is relatively low and the interaction between nucleons is relatively weak, making the nucleon-nucleon 
correlation small. The Hartree-Fock mean field theory is a major theoretical tool for dealing with systems with little correlation. It 
produces the appropriate single-particle potential corresponding to the actual density distribution for a given nucleus. This corresponds to 
an effective energy-density functional because nuclei are made from two types of particles (neutrons and protons) and the nucleon-
nucleon interaction is an approximated concept which is harder tounderstand than the electronic structure of atoms. Most fundamental 
models use the interaction 

 between nucleons as input (Machleidt & Slaus, 2001) and calculate the equation of state using nuclear matter diagrammatictechniques 
(Kaiser and et al, 2002; Fogaça & Navarra, 2006). These microscopic models have made good progress ( Navrátil and et al, 2012; Pieper 
and et al, 2004). Some carry outcalculations for finite nuclei in a no-core shell model, a coupled cluster (Włoch and et al, 2005; Nie, 
2007) or using the unitarycorrelation method (Roth and et al, 2005). The shell corrections for the microscopic-macroscopic (mic-mac) 
approachhave also been very successful in reproducing the systematic of the known nuclear binding energy (Aboussir and et al, 1995). 
Mic-mac methods depend strongly on phenomenological information. When one extrapolatesmagic nuclei, doubts may arise from the 
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use of the Nilsson or Yukawa potential which is added as independent additional information that is not self-consistent. The 
consideration of two, three or more nucleon interactions leads to the so-called ab - initio method (Karki  and et al, 1997; Nakamura and 
et al, 2008; Vary and et al, 2009; Pickard & Needs, 2011) that consists of solving the nuclear many-body problem using numerical 
methods as exactly as possible. Recently, in particle physics, the one Boson exchange potential has been developed to obtain the binding 
energies of light nuclei such as in the AdS/CFT and AdS/QCD approaches (Pahlavani and et al, 2010; Pahlavani and et al, 2011; 
Pahlavani & Morad, 2013). Despite these efforts, their accuracy remains limited.The three excellent methods for explaining nuclear 
properties are the Skyrme energy functional,which is zero range and density dependent, the Skyrme-Hartree-Fock (SHF) model 
(Rashdan, 2000; Karataglidis and et al, 2010) and the relativistic mean field model (Dutra and et al, 2014; Miyatsu and et al, 2015). Self-
consistent mean field models fall between the ab-initio method and the mic-mac method. The connection between the ab - initio and the 
SHF models is still under development (Brack and et al, 1985). Although the ab - initio type approaches have shown significant progress, 
they remain limited to the light nuclei with small mass numbers. A developed version of this type is the extended Thomas-Fermi-Skyrme 
interaction model (Bartel  and et al, 2008). Since the original work by Skyrme in the 1950s (Skyrme, 1956  )  and the Vautherin and Brink 
(Vautherin, 1972) parametrization of the original interaction in the early 1970s, considerable effort has been invested in the application 
of this density- dependent effective interaction to both ground-state properties of finite nuclei and nuclear matter in the framework of the 
mean-field Hartree-Fock approximation (Bender and et al, 2003; Stone and et al, 2016). The advantage of the structure of the Skyrme 
density functional is that it allows analytical expression of all variables characterizing infinite nuclear matter (Chabanat and et al, 1997; 
Dutra and et al, 2008). The Skyrme energy density functional model is able to reproduce quite accurate experimental data on binding 
energy and nuclear decay barriers such as fusion, fission and cluster decay barriers. The theory presented by Brueckner et al. (Brueckner 
and et al, 1954), established an essential framework which, in principle,relates the nuclear structure to the two-nucleon interactions. 
However, previous attempts have failed to reproduce binding energies with reasonable accuracy, single-particle energies, and charge- 
density distributions for the finite nuclei. The empirical value of E0 per nucleon of about 16 MeV can be extracted from a semi-empirical 
mass formula or from the extrapolation of the binding energies of the heavy nuclei (Basu, 2005).Various many-body techniques typically 
lead to over-estimation of the saturation density ρ0 of the symmetric nuclear matter at which the binding energy per nucleon reaches its 
maximum (Li, and et al, 2006).The nuclear deformation includes a wide range of nuclei from the light to the super heavy. The heavy and 
superheavy nuclei are not spherical and it is essential to take into account the nuclear deformation, including the quadrupole, the 
hexadecapole and the hexacontatrapole deformations,in the theoretical calculation. In this study, our claim is to investigate the role of the 
deformation effects on the effective potential and total binding energy. Various many-body techniques typically lead to an over 
estimations of the saturation density ρ0 of symmetric nuclear matter SNM, at which the binding energy per nucleon (average binding 
energy) reaches its maximum (Li, and et al, 2006).section2 gives a brief description of semiclassical expression of the Skyrme energy 
density functional.The results of the calculations for binding energy with respect to deformations are presented in Section3. Finally, a 
summary of the investigation is given in section4. 

Skyrme density functional approach 

The Skyrme force was first introduced by Skyrme (Skyrme, 1958) as an effective force for the nuclear Hartree-Fock calculations. 
Corresponding to the density functional theory, the energy density functional depends on the densities and currents (and their 
derivatives) representing the distributions of nucleonic matter, the spins, the momenta and the kinetic energy. The SHF framework has 
been successful in reproducing the nuclear matter related to the finite nuclei (Dutra and et al, 2008) and the Skyrme effective interaction 
has been extensively applied to reproduce the nuclear properties and decay. There is some evidence for employing the SHF model to 
study the hyper-nuclei properties. During the development of the SHF theory, many parameter sets were proposed to reproduce the 
properties of nuclear matter and the finite nuclei. The total energy in the Skyrme energy density functional approach can be calculated 
using (41): 

0 3( ) fin eff coulH r k H H H H Hso Hsg H= + + + + + + +
           

(1)
 

where H(r) is the energy density functional, Ek is the density of the kinetic energy, H0 is the zero range energy, H3 is the density-
dependent term, Heff is the finite range term, Hso is the spin-orbit coupling energy, Hcoul is the Coulomb energy with the exchange 
corrections and Hsg is the coupling between the spin and gradient, which is small and neglected in many calculations. The general energy 
density formula is as follows: 
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In which the total density can be described as the summation of the neutron and proton densi ties. Total density, kinetic energy and 
angular momentum are the sum of the proton and neutron 
Contributions as:  

n pρ = ρ + ρ   
 n pτ = τ + τ   n pJ J +J=

                                                       
(3)

 

Where n and p denote neutron and proton, respectively. As stated earlier, different formalisms exist 

With different numbers of adjustable parameters. Great effort has been made to investigate the properties of nuclei and the results of 
different sets of parameters (Stone, 2007). The energy density function used in this investigation includes ten parameters (Chabanat and 
et al, 2007; Chabanat and et al, 2008). Adjustable parameters can be obtained using fitting to the known experimental or theoretical data 
of a nucleus with acceptable accuracy.The values of these parameters play important roles in obtaining favorable results (Gupta and et al, 
2009). In our calculation, the macroscopic energy is calculated using the Skyrme interaction with parameter set SkM. 

Results and Discussion 

The goal of the current study was to calculate the binding energy using the Skyrme energy density function presented in Equation (1) 
considering the deformation. The Coulomb part of energy for the density of the energy function can be calculated as: 
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where Rc is the radius of the charge distribution. 
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The density used in Equation (12) is only proton density. The second part of this equation corresponds to the exchange correlation in 
which the Pauli Exclusion Principle has taken in to account. The total energy density function includes both the density of the neutrons 
and protons. There are many types of energy density functions. In these calculations, the two-parameter Fermi density distribution was 
used for the proton and neutron density 
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Where ρ0 and aq are adjustable parameters of the distribution and are different for the neutrons and protons in each nucleus. Parameter ρ0 
is the saturation density and is calculated by normalizingthe proton number density function to atomic number Z and the neutron number 
density functionto N for each known nucleus. R is the nuclear radius and is the diffuseness thickness parameter.In this model, the binding 
energy is obtained by integrating over the full range of radius variabler. 
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The distribution of neutrons and protons inside the nucleus follows a two-parameter Fermi density function. However, it should be noted 
that parameters within the two-parameter relationship are different for neutrons and protons. In order to obtain the saturation densities, 
the density is normalized relative to the number of nucleons (neutrons and protons), 
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Since the radius of the deformed nuclei is a function of the angle, the radius is obtained from the  
Following expansion 
 

0 , ,
,

R( , )=R (1+ ( , ))l m l m
l m

Yθ φ β θ φ∑                                                               (8)    

  Therefore, the density and radius of the nucleus also varied with the angle φ. This in turn causes a variation in the calculation of the 

nuclear interaction potential. In the above relation, ,l mβ and ,l mY are in order, the deformation parameter and spherical harmonic. By 

considering the quadrupole deformation with axial symmetry relative to the angle', it yield              
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 In order to obtain ρ0 (ρ0p or ρ0N) for the deformed nucleus, the following normalization conditions 

are applied,
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And after a radial integration, one obtains 
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Taking into account the two-parameter Fermi density distribution and by considering deformation and relying on it, in relation to the 
energy density and integration over it in all space, saturation density is obtained for different isotopes. Table 2.  Presents a comparison of 
the results of the calculation with the results of the spherical shape. 

Table 1: Values of deformation parameter β2, and 
β4 for nuclei (Möller and et al, 2016) 

β4 β2 nuclei 

0.126 0.185 230U 

0.114 0.195 231U 

0.116 0.206 232U 
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0.116 0.206 233U 

0.106 0.215 234U 

0.106 0.215 235U 

0.108 0.226 236U 

0.095 0.226 237U 

0.095 0.236 238U 

Table 2: Saturation densities of uranium isotopes in terms of (fm-3) for spherical and 
deformed states 

ρ0 
(deformed) 

ρ0p 
(deformed) 

ρ0n 
(deformed) 

ρ0 
(spherical) 

ρ0p 
(spherical) 

ρ0n 
(spherical) nuclei 

0. 1518 0.0607 0.0911 0.1515 0.0615 0.0900 230U  

0.1516 0.0604 0.0912 0.1514 0.0612 0.0902 231U  

0.1514 0.0601 0.0914 0.1514 0.0610 0.0904 232U  

0.1514 0.0598 0.0916 0.1513 0.0608 0.0905 233U  

0.1513 0.0595 0.0918 0.1513 0.0606 0.0908 234U  

0.1512 0.0592 0.0920 0.1512 0.0603 0.0909 235U  

0.1510 0.0589 0.0922 0.1513 0.0602 0.0911 236U  

0.1510 0.0586 0.0924 0.1512 0.0599 0.0912 237U  

0.1508 0.0580 0.0927 0.1513 0.0595 0.0917 238U  
 

Table 2 shows that the central density decreases with increasing mass and atomic number. Using the results of Table 2 and taking into 
account deformation in the density distribution function and By integration of the energy density, the average binding energy of these 
isotopes were calculatedand compared with experimental data in Table 3 
 

Table 3: Calculated average binding energy using the present approach for spherical and 
deformed uranium isotopes compared with experimental data. 

Average binding 
energy,Mev 

(experimental) 

Average binding 
energy,Mev 
(deformed) 

Average binding 
energy,Mev 
(spherical) 

nuclei 

7.62086 7.6208695 7.6273 230U  

7.61125 7.6160173 7.6203 231U  

7.61163 7.616681 7.6253 232U  

7.60386 7.605458 7.6172 233U  

7.60042 7.60555 7.6174 234U  

7.590638 7.593617 7.6018 235U  

7.58644 7.593701 7.6029 236U  

7.57594 7.58059 7.5894 237U  

7.570217 7.5806 7.5893 238U  

Conclusion 

The current study focused on calculating the binding energy of even-even, even-odd and odd-oddUranium isotopes using the Skyrme 
effective interaction, considering the quadrupole and hexadecapole deformations. In order to calculate the nuclear average binding 
energies, the two parameter Fermi density distribution, the nucleon radius and saturation density were employed. The results obtained 



77                                                                                                                                           J Biochem Tech (2018) Special Issue (2): 72-80 
 

using the present approach are in good agreement with the available experimental data. Using the present approach and considering 
quadrupole and hexadecapole deformations, the total and the average binding energies of the Uranium isotopes were calculated. The 
results show that with the addition of deformation (both for positive and negative deformation parameters), the value of the binding 
energy decreased and became closer to the experimental data. Although the quadrupole deformation is more effective compared to the 
hexadecapole deformation, the hexadecapole coeffcient is not ignored in the calculations of the nuclear binding energy. Within this semi-
microscopic approach, it is possible to calculate the binding energy with high accuracy without having to go through the full self-
consistency HF approach. 
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Fig. 1: Total binding energy for Uranium isotopes compared with experimental data and deformations. 

 

 
Fig. 2: Average binding energy for Uranium isotopes compared with experimental data and 

 
Fig. 3: Average binding energy for even isotopes compared with experimental data with defor-mations.  
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Fig. 4: Average binding energy for odd isotopes compared with experimental data with defor- mations 

  
  


