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Abstract 

 
In this paper, entropy was studied in non-linear models including 

exponential, Gompertz, and logistic, to estimate epidemiological 

parameters of interest in data from confirmed cases of infection by 

COVID-19 in Peru. The data related to the spread of COVID-19 in 

Peru comes from the information available on the INS-Peru 

institutional portal (2020). The Akaike information criterion (AIC) 

and the residual standard error (ERR) were considered to evaluate 

the entropy of the models. The estimation of the parameters of the 

models was carried out using maximum likelihood and by the 

Bootstrap method. The results showed that the entropy of the 

models is related to the information generation rate, associated 

with the differential in the number of tests applied. Entropy 

severely affected maximum likelihood estimators. The Bootstrap 

estimators showed better performance against EMV with the 

estimated peak of confirmed cases. Bootstrap estimators were 

significantly affected by sample size, especially when n ≤ 10. The 
results of this research suggest considering the entropy and the 

information generation rate (differential in the application of tests 

for the diagnosis of COVID-19 in Peru), as well as the use of 

Bootstrap estimators as an alternative to estimate parameters of 

epidemiological models. 

 
Keywords: Nonlinear models, Information generation rate, 

Bootstrap.  

Introduction  

After the most recent H5N1 avian influenza epidemics and during 

the 2009 H1N1 influenza pandemic, the international scientific 

community in the public health area has made efforts within the 

framework of the imperative need to develop standardized research 

and collect data that will serve as support to face eventual 

pandemics (Sundus, et al., 2018; Shakeri, et al., 2018; Alzahrani, 

et al., 2019; Ren-Zhang, et al., 2020). On December 31, 2019, 27 

cases of pneumonia of unknown etiology were identified in Wuhan 

City, Hubei Province in China. Wuhan is the most populous city in 

central China with a population of over 11 million. These patients 

presented most notably with clinical symptoms of dry cough, 

dyspnea, fever, and bilateral pulmonary infiltrates on imaging. All 

of the cases were related to the Wuhan Huanan Seafood Wholesale 

Market, which marketed fish and a variety of live animal species, 

such as poultry, bats, marmots, and snakes (Lu et al. 2020). The 

causative agent was identified from throat swab samples conducted 

by the Chinese Center for Disease Control and Prevention (CCDC) 

on January 7, 2020, and was subsequently named Severe Acute 

Respiratory Syndrome Coronavirus 2 (SARS- CoV-2). The disease 

was named COVID-19 by the World Health Organization, known 

by its Spanish acronym WHO (World Health Organization, 2020). 

To apply epidemiological models it is essential to understand the 

phenomena of complexity and chaos since chaos theory has been 

considered as a possible underlying explanatory model. The 

parameters associated with chaos are dimension measurements and 

information generation rates (entropy), understanding entropy as a 

measure of disorder. Since these analyses require large series of 

data that frequently make their calculation very difficult if not 

impossible in practical terms, theories and methods were devised 

to make the statistical study of regularity feasible, relating the 

information generation index with entropy, applied to small series 

of clinical data originated from complex “noisy” systems to 
demonstrate the existence or non-existence of chaos and non-

linearity (Cuestas, 2013). Beyond the criteria that involve the 

evaluation of models, from the adjustment coefficient (R2), the 

entropy (Information criteria), the number of parameters (Mallows' 

Cp), the residual standard error (ERR), which although they are 
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criteria that allow calibrating the predictive capacity of the model, 

they are not a sufficient condition for these models to be used as 

instruments for decision-making. It is the circumstances 

surrounding the environment of the phenomenon that determine 

the quality of the information, that is, of the sample, and 

consequently the levels of entropy of the models. 

In the case of COVID-19 in Peru, where on March 6, 2020, the first 

case of contagion was registered, marking the beginning of a public 

health problem that has led the Peruvian Government to take 

measures ranging from social distancing, mandatory social 

isolation, until mandatory social immobilization, and that to date 

(April 15, 2020) despite these mediations, the figure stands at more 

than 11,000 confirmed cases of contagion by COVID-19 in much 

of the national territory. In this sense, in Peru, the limitations in the 

acquisition of tests as a consequence of a global phenomenon, 

about which there is little knowledge given its recent appearance, 

has woven a series of situations that have impacted not only the 

daily life of people but also the possibility of having models that 

allow defining the behavior of COVID-19, in terms of fairly 

precise estimates concerning the peak of contagion, with which 

action lines can be established and the class and duration of 

measures to decrease the contagion rate. In this sense, the increase 

in the number of scientific investigations, and the proliferation of 

long and complex data sets, in recent years have expanded the 

scope in the applications of statistical methods (González-Díaz, 

2016). That is why, in the face of the problems that this virus has 

generated, especially about models frequently used in 

epidemiology, which despite exhibiting a good fit, allow only a 

partial description of the behavior of this pandemic, but make 

estimation impossible of parameters that allow designing public 

policy strategies, the central object of this research is to study 

entropy in non-linear models, especially, exponential, Gompertz 

and logistic, to more accurately estimate epidemiological 

parameters of interest, namely the number and peak of COVID-19 

infections. 

Materials and Methods 

The data related to the spread of COVID-19 in Peru comes from 

information available on the INS-Peru institutional portal (2020), 

for the period from March 6 to April 15, 2020. For modeling the 

estimation of the number of infected for COVID-19 in Peru growth 

the models that were considered include exponential, Gompertz, 

and logistic, that unlike the models frequently used in 

epidemiology, such as the SIR and SEIR, based on differential 

equations and that tend to make unrealistic estimates in the case of 

these epidemics, the growth models allow, in addition to modeling 

the behavior of the epidemic up to the phase where it would reach 

the peak of contagion, they would also be able to make estimates 

of the mentioned peak, which, as far as possible, would be 

consistent and asymptotically unbiased. 

The growth models considered in this research are briefly detailed 

below: 

According to Seber and Wild (1989), the Gompertz model is 

defined as follows: 

𝑓(𝑥) = 𝑐 + (𝑑 − 𝑐) × 𝑒𝑥𝑝 (−𝑒𝑥𝑝(𝑏(𝑥 − 𝑒))) 

It is a response/growth curve across the true axis, that is not limited 

to non-negative values even though this is the range for most 

response and growth data.  

If b < 0 the mean function increases, while it decreases for b > 0. 

In practice, several reparametrizations of the model have been 

carried out. 

According to Bruce and Versteeg (1992), the logistic model is 

defined as follows: 

𝑓(𝑥) = 𝑐 + 𝑑 − 𝑐(1 + 𝑒𝑥𝑝(𝑏(𝑥 − 𝑒))) 

Selection Criteria based on Information Measures  

In this research, in addition to the widely known criteria to evaluate 

the goodness of fit of the models, such as the coefficient of 

determination (R2) and the residual standard error (ERR), there are 

the information criteria or entropy indices. 

Akaike Information Criteria (AIC) 

This criterion is detailed in González and Landro (2018), who 

points out that if the problem consists of selecting the coefficients 

β that are as close as possible to the vector 𝛽∗, the distance between 

the distributions 𝑓(𝑌 𝛽∗⁄ ) and 𝑓(𝑌 𝛽⁄ ) can be characterized by an 

entropy measure of the form (see Akaike, H. (1978b)): 

𝐷(𝛽∗, 𝛽) = ∫ 𝑓(𝑦 𝛽∗⁄ )∞
−∞ 𝑙𝑛[𝑓(𝑦 𝛽⁄ )]𝑑𝑦

− ∫ 𝑓(𝑦 𝛽∗⁄ )∞
−∞ 𝑙𝑛[𝑓(𝑦 𝛽∗⁄ )]𝑑𝑦 

(where the first addend of the second member represents the ability 

to fit of 𝑓(𝑌 𝛽⁄ ) for 𝑓(𝑌 𝛽∗⁄ ) and the second addend, for a given 

function 𝑓(𝑌 𝛽∗⁄ ), is a constant). The minimization of the entropy 

measure implies the minimization of the information criterion (see 

Kullback, 1959): 𝐾𝐿(𝛽∗, 𝛽) = −𝐷(𝛽∗, 𝛽)= ∫{𝑙𝑛[𝑓(𝑦 𝛽∗⁄ )]∞
−∞− 𝑙𝑛[𝑓(𝑦 𝛽⁄ )]}𝑓(𝑦 𝛽∗⁄ )𝑑𝑦 

 

Assuming that 𝛽 = 𝛽∗ + ∆𝛽 (where ∆𝛽 = [∆𝛽1  ∆𝛽2  …  ∆𝛽𝑘 ]𝑇 is 

an arbitrary norm vector small), then the criterion 𝐾𝐿(𝛽∗, 𝛽) 

admits a Taylor series expansion of the form: 
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 𝐾𝐿(𝛽∗, 𝛽∗ + ∆𝛽) ≈ ∫ {∑(∆𝛽)𝑖 𝜕𝑙𝑜𝑔[𝑓(𝑦 𝛽∗⁄ )]𝜕𝛽𝑖∗𝑖

∞
−∞− 12 ∑ ∑(∆𝛽)𝑖(∆𝛽)𝑗𝑗𝑖

𝜕2𝑙𝑜𝑔[𝑓(𝑦 𝛽∗⁄ )]𝜕𝛽𝑖∗𝜕𝛽𝑗∗ }∙ 𝑓(𝑦 𝛽∗⁄ )𝑑𝑦 

If 𝑓(𝑦 𝛽∗⁄ ) is a regular function, the first term of the second 

member of this expression vanishes and, consequently, it follows 

that 𝐾𝐿(𝛽∗, 𝛽∗ + ∆𝛽) ≈ 12 ‖∆𝛽‖𝐼2 (where ‖∆𝛽‖𝐼2 = ∆𝛽𝑇𝐼(𝛽∗)∆𝛽, 

where ‖⦁‖𝐼2  is the Euclidean norm and I(⦁) is the information 

matrix of Fisher). Suppose that β is included in an s-dimensional 

space 𝛩𝑠(1,2, … , 𝑘 − 1), while the vector of the true values of the 

coefficients, 𝛽∗, is included in a k-dimensional space ( k > s). 

Denoting by 𝛽𝑠∗  the projection of 𝛽∗ on𝛩𝑠 in the sense of the 

Euclidean norm; it is shown that 2𝐾𝐿(𝛽∗, 𝛽𝑠) ≈ ‖𝛽𝑠∗ − 𝛽∗‖𝐼2 +‖𝛽𝑠 − 𝛽𝑠∗‖𝐼2 (where 𝛽𝑠 ∈ 𝛩𝑠 and it is verified that 𝛽𝑠 ≈ 𝛽𝑠∗). 

Replacing 𝛽𝑠 by the vector of random variables 𝛽̂𝑠 formed by the 

restricted maximum-likelihood estimators of 𝛽∗ in 𝛩𝑠 and, taking 

into account that, for values of n that are sufficiently large, 𝑛‖𝛽𝑠∗ − 𝛽̂𝑠‖𝐼2 𝑑→ 𝜒𝑠2, it is verified that 2𝐸[𝐾𝐿(𝛽∗, 𝛽̂𝑠)] ≈ ‖𝛽𝑠∗ −𝛽∗‖𝐼2 + 𝑠𝑛. This expression constitutes a measure of the deviations 

of 𝛽̂𝑠 to the vector 𝛽∗ and allows us to conclude that the expected 

value of this deviation includes a component that represents the 

error related to the selection of a coefficient space approximated 

by 𝛽𝑠∗  and another which represents the error due to the estimation 

of the vector of the coefficients. Akaike showed that, under certain 

conditions of regularity, the likelihood ratio is: 

𝐿𝑅(𝑌) = −2 ∑ 𝑙𝑜𝑔 [ 𝑓(𝑦𝑖 𝛽̂𝑠⁄ )𝑓(𝑦𝑖 𝛽̂(𝑀𝑉)⁄ )] 𝑑→ 𝜒𝑁𝐶(𝑘−𝑠)2𝑛
𝑗=1 (‖𝛽𝑠∗ − 𝛽∗‖𝐼2) 

And therefore, that 
1𝑛 [𝐿𝑅(𝑌) + 2𝑠 − 𝑘] is an unbiased estimator of 

the measure 𝐸[𝐾𝐿(𝛽∗ − 𝛽̂𝑠)]. The Akaike information criterion 

(AIC) consists of minimizing the logarithm of the likelihood 

function −2𝐿𝑛(𝑌, 𝛽̂𝑠) + 2𝑠   (𝑠 = 1,2 … , 𝑘 − 1) in which the first 

term represents the measure of the error due to the lack of capacity 

to adapt to the approximation and the second term defines the 

penalty factor. Under the assumption of normality of the assumed 

true model, its density function assumes the form: 

𝑓(𝑌̂∗) = 1(𝜎𝜀∗√2𝜋)𝑛−𝑝 𝑒𝑥𝑝 {− 12𝜎𝜀∗2 ∑ [𝑌𝑡 − 𝑌𝑡∗]2𝑛
𝑡=𝑝+1 } 

and the likelihood function of the candidate model (𝑌̂𝑡𝑝) will be of 

the form. Therefore, the Kullback-Leibler distance will assume the 

form: 

𝑓(𝑌̂𝑝) = 1(𝜎𝑝𝜀√2𝜋)𝑛−𝑝 𝑒𝑥𝑝 [− 12𝜎𝑝𝜀2 ∑ (𝑌𝑡 − ∅1𝑌𝑡−1 − ⋯𝑛
𝑡=𝑝+1− ∅𝑝𝑌𝑡−𝑝)2]. 

Hence, the Kullback-Leibler distance will assume the form: 

𝐾𝐿 = 2𝑛 − 𝑝 𝐸 [𝑙𝑛 (𝑓(𝑌̂∗)𝑓(𝑌𝑝)) 𝑓(𝑌̂∗)⁄ ] = 

= 𝑙𝑛 (𝜎𝑝𝜀2𝜎𝜀∗2 ) + 𝜎𝜀∗2𝜎𝑝𝜀2 1𝑛 − 𝑝 ∑ [𝑚(𝑌̂𝑡∗) − ∅1𝑌𝑡−1 − ⋯𝑛
𝑡=𝑝+1− ∅𝑝𝑌𝑡−𝑝]2 − 1. 

Thus, substituting in this expression the coefficients ∅𝑗, 𝜎𝜀∗2 ^ 2 

and 𝜎𝑝𝜀2  by their maximum-likelihood estimators, we obtain: 

𝐾𝐿 = 𝑙𝑛 ( 𝜎̂𝑝𝜀(𝑀𝑉)2𝜎̂𝜀∗(𝑀𝑉)2) + 𝜎̂𝜀∗(𝑀𝑉)2𝜎̂𝑝𝜀(𝑀𝑉)2 + 𝐿2𝜎̂𝑝𝜀(𝑀𝑉)2 − 1. 
From this definition the following selection criteria results: 

𝐴𝐼𝐶(𝑝) = 𝑙𝑛(𝜎̂𝑝𝜀(𝑀𝑉)2) + 2(𝑝 + 1)𝑛 − 𝑝 , 
which allows obtaining an asymptotically efficient estimator 𝑝̂ =min𝑝 𝐴𝐼𝐶(𝑝). 

Bootstrapping Estimation 

In addition to the maximum likelihood estimators of the parameters 

of the nonlinear models considered in this investigation, the 

estimation was performed using the Bootstrap method proposed by 

Efron (1979), which is one of the simplest methods used to obtain 

an estimator of a parameter 𝛽 = 𝛽(𝑃) where P is the postulated 

statistical model. Alonso (2001) presents the Bootstrap method in 

a general situation: 

Let be 𝑍 =  (𝑍1, 𝑍2, . . . , 𝑍𝑛) a data set generated by the statistical 

model P, and let be T(Z) the statistic whose distribution L(T ; P) 

we wish to estimate. The Bootstrap method proposes as an 

estimator of L(T ; P) the distribution L*(T*; n Pˆ ) of the statistic 
T* =T (Z*), where Z* is a data set generated by the estimated model 𝑃̂𝑛. Note that if 𝑃̂𝑛 = 𝑃, then the distributions L(T; P) and 𝐿∗(𝑇∗;  𝑃̂𝑛) coincide. Then if we have a good estimator of P, it is 

logical to suppose that 𝐿∗(𝑇∗;  𝑃̂𝑛) it will approach L(T ; P).  

The models described above, their estimators (EMV & Bootstrap), 

and the model selection criteria (AIC & ERR) were determined in 

the R environment, using the “drc” package and the “boot” 
package (R Core Team 2020). For details see Appendixes 1 and 2. 
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Results 

Table 1 shows the results of the evaluation of entropy in three non-

linear models (exponential, logistic & Gompertz) adjusted to data 

from confirmed cases of contagion by COVID-19 in Peru in the 

period March 6 - April 15, 2020, and related statistics. There it is 

observed that, for each of the models considered, the entropy index 

(AIC) and the residual standard error (ERR) increase as the sample 

size increases (days considered in the study). In the same way, the 

variances 𝜎̂𝛽̂𝑖2 of the maximum likelihood estimators (EMV) of the 

peak of the curve (c in the case of the exponential model and d in 

the Gompertz & logistic models) increase when n grows, which 

results in unstable estimators, even when the data shows a good fit, 

especially in the case of the logistic model (see Figure 1). On the 

other hand, Figure 2 shows a comparison of the estimates by 

maximum likelihood and Bootstrap of the peak of confirmed cases 

of contagion by COVID-19. There it is observed that the Bootstrap 

estimators show a better performance than the EMV, as well as a 

considerable increase in their value on day 35. However, for values 

of n ≤ 10 the EMV show a better performance than the Bootstrap 

estimators. 

Discussion 

About the results of the entropy measurement of the models, 

Cuestas, (2013) points out that entropy is related to the information 

generation rate, hence the increase in the AIC and EER values 

associated with the three models as n grows, it may be related to 

the rate of generation of official information expressed in the 

differential of the number of rapid and molecular tests applied. 

Regarding the Bootstrap estimators, Quintana (2003) points out 

that the error of the Bootstrap approximation to the distribution of 

the pivotal 𝑇𝑛 is of order 𝑛−1 in probability, so the Bootstrap can 

not only allow approximating the probabilistic distribution 

statistics of interest when obtaining it is complex, but also allows 

to improve the normal approximation of the classical estimators, 

among them the EMV. In this sense, this may explain the 

performance of the Bootstrap estimators against the EMV when n 

grows, and in turn, the behavior of the EMV against the Bootstrap 

estimators when n ≤ 10.

Table 1. Evaluation of the Entropy of Non-linear Models Adjusted to the Data of Confirmed Cases of Contagion by COVID-19 

in Peru between March 6 - April 15, 2020. 

Model 
Day 

(n) 
AIC EER 

Standard Error of the Estimator (𝝈̂𝜷̂𝒊) 

b c d e 

Exponential 

5 16,759 0,918 - 3,916 3,663 1,688 

10 81,086 11,175 - 1979,617 7,758 300,304 

15 159,928 42,816 - 4414,170 23,613 261,318 

20 226,444 61,771 - 5523,214 29,102 280,223 

25 360,903 299,779 - 7324,569 59,657 240,469 

30 413,530 219,771 - 9990,748 82,813 197,884 

35 567,516 749,163 - 19743,778 259,320 440,470 

 41 740,754 1910,435 - 24706,220 610,530 600,690 

Gompertz 

5 19,061 1,338 0,456 117,441 5,046 8,714 

10 61,233 4,047 0,029 2,520 1424,007 5,051 

15 115,949 9,658 0,014 4,509 1935,455 3,745 

20 159,989 11,500 0,023 4,868 67,288 0,580 

25 241,163 26,883 0,004 13,015 1781,100 3,380 

30 305,814 35,976 0,001 13,889 2887,740 1,577 

35 476,137 200,505 0,001 63,644 200460,000 1,761 

 41 571,927 241,088 0,001 52,256 26707,000 1,458 

Logistic 

5 19,235 1,362 0,510 116,640 4,793 7,736 

10 60,086 3,822 0,084 3,179 7338,922 12,575 

15 114,991 9,354 0,804 6,384 371,240 2,560 

20 157,362 10,769 0,031 5,368 24,473 0,289 

25 242,296 27,499 0,025 28,825 3767,651 9,667 

30 298,883 32,051 0,011 21,401 8464,700 7,301 

35 459,827 158,831 0,010 43,261 589060,000 6,873 

 41 561,218 211,572 0,015 54,610 3842,900 1,349 
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Figure 1. Adjusted Logistic Model on the Data from Confirmed Cases of COVID-19 Infection in Peru (March 6- April 15, 2020). 

 
Figure 2. Maximum Likelihood Estimate vs. Bootstrap of the Peak of Contagion (d) using a Logistic Model on Data from Confirmed 

Cases of Contagion by COVID-19 in Peru (March 6-April 15, 2020). 

Conclusions 

The findings of this research fundamentally gravitate around the 

following aspects: first, it was evidenced that the entropy of the 

non-linear models considered in this work (exponential, logistic & 

Gompertz) is related to the information generation rate, which is 

associated with the differential in the number of tests applied. 

Likewise, entropy severely affected the maximum likelihood 

estimators. On the other hand, despite the effects of entropy, the 

Bootstrap estimators showed a better performance compared to the 

EMV with the estimated peak of confirmed cases, which showed 

greater consistency and stability of these estimators, in addition to 

being less sensitive. The entropy associated with the rate of 

generation of information related to confirmed cases of contagion 

by COVID-19 in Peru. However, Bootstrap estimators were 

significantly affected by sample size, especially when n ≤ 10. It is 
suggested to consider the entropy and the information generation 

rate (differential in the application of tests for the diagnosis of 

COVID-19 in Peru), as well as the use of Bootstrap estimators as 

an alternative, to estimate parameters of epidemiological models. 

Finally, the results of this research indicate that there is solid 

evidence to affirm that in the epidemiological area, especially in 

the case of COVID-19 in Peru, the criterion based on the entropy 

of the model allows the description of this phenomenon from a 
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model of mathematical ability to make predictions that contribute 

to the implementation of control-oriented strategies as a 

fundamental action within the public policy; however, based on the 

increase in the rate of information generation and the fact that the 

Bootstrap and EMV estimators show a trend towards stability, it is 

presumed that with a slight increase in the number of sampling 

days (n ≈ 50), more precise estimates could be made of the peak of 

confirmed cases of COVID-19 infection in Peru.  

Appendix 1. R Code to Adjust Non-linear Models on Data Related 

to the Number of Confirmed Cases of COVID-19 Infection in Peru 

until April 2020 

library(drc) 

library(stats) 

library(kableExtra) 

plot(dia, infectados, xlab = "Tiempo", ylab = "N") 

tablamod <- data.frame( 

Modelo = c("Exponencial", "Gompertz", "Logístico", "Log-

logístico", "Weibull"), 

Parametro.fct = c("EXD.3()", "G.4()", "L.5()", "LL.5()", "W1.4()") 

) 

kable(tablamod, caption = "Tabla 1.  Códigos para modelos en fct") 

%>% 

kable_styling(full_width = F) %>% 

column_spec(1, bold = T, border_right = T) %>% 

column_spec(2, width = "10em") 

dataset1<-data.frame(dia,infectados) 

dataset1 

result.G <- drm(infectados~dia, data = dataset1, fct = G.4()) 

summary(result.G) 

plot(result.G, xlab = "Día", ylab = "N° de infectados") 

AIC(result.G) 

result.Exp <- drm(infectados~dia, data = dataset1, fct = EXD.3()) 

summary(result.Exp) 

plot(result.Exp, xlab = "Día", ylab = "N° de infectados") 

AIC(result.Exp) 

result.Log <- drm(infectados~dia, data = dataset1, fct = L.5()) 

summary(result.Log) 

plot(result.Log, xlab = "Día", ylab = "N° de infectados") 

AIC(result.Log) 

Appendix 2. R Code to Estimate Non-linear Model Parameters 

through Bootstrap on Data related to the Number of Confirmed 

Cases of COVID-19 Infection in Peru until April 2020 

library(Bootstrap) 

library(ISLR) 

library(drc) 

library(stats) 

library(kableExtra) 

plot(dia, infectados, xlab = "Tiempo", ylab = "N") 

tablamod <- data.frame( 

Modelo = c("Exponencial", "Gompertz", "Logístico", "Log-

logístico", "Weibull"), 

Parametro.fct = c("EXD.3()", "G.4()", "L.4()", "LL.4()", "W1.4()") 

) 

kable(tablamod, caption = "Tabla 1.  Códigos para modelos en fct") 

%>% 

kable_styling(full_width = F) %>% 

column_spec(1, bold = T, border_right = T) %>% 

column_spec(2, width = "10em") 

dataset1<-data.frame(dia,infectados) 

dataset1 

result.Log <- drm(infectados~dia, data = dataset1, fct = L.4()) 

summary(result.Log) 

AIC(result.Log) 

set.seed(1) 

library(ISLR) 

indices.train <- sample(x = nrow(dataset1), size = 

0.5*(nrow(dataset1)), replace = FALSE) 

datos.entrenamiento <- dataset1[indices.train,] 

datos.test <-dataset1[-indices.train,] 

n=nrow(dataset1) 

head(result.Log) 

result.Log$fit$par[3] 

meanstar1=mean(dataset1$infectados) 

sdstar1=sd(dataset1$infectados) 

R = 1000 

Fstar = numeric(R) 

for (i in 1:R) { 

siminfectados= rnorm(n, mean=meanstar1, sd=sdstar1) 

simtiempo=dataset1$dia 

simdata = data.frame(siminfectados,simtiempo) 

result.Log <- drm(siminfectados~simtiempo, data = simdata, fct = 

L.4()) 

Fstar[i]=result.Log$fit$par[3] 

} 

Fstar 

mean(Fstar) 

hist(Fstar,main="",xlab="Pico de 

contagio",ylab="Densidad",breaks=90,freq=FALSE). 
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