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Escherichia coli and other bacteria navigating through ‘open’ 
environments are under the impact of noise from the environment 
and from within the cells. This generates fluctuations in the kinetic 
parameters that characterize the intra-cellular reactions of the 
chemosensory network, thus affecting the chemotaxis of the cells. 
This aspect has been studied here for E. coli synthesizing 
recombinant glucoamylase in a continuous-flow microreactor. 
Response coefficient analysis (RCA) was applied to a new four-
parameter model of the chemotaxis of E. coli. The model considered 
two types of responses of the cells – linear and adaptive – and two 
rates of movement of the chemoattractant – slow and fast. Some 
cells at each position in the microreactor were considered to be 
moving to the left, some to the right and others in a tumbling state. 
Striking similarities and differences were observed between the 
different types of cells, between linear and adaptive responses, and 
between the kinetic responses to a slow-moving and a fast-moving 
chemoattractant distribution. One salient observation was that the 
response coefficients of the left-moving and right-moving sub-
populations were mirror images of each other. Tumbling cells either 
had intermediate characteristics in some situations, as might be 
expected, or, in other circumstances, resembled the left-moving cells 
more than they corresponded to the right-moving bacteria. Under 
certain conditions, cells with normal linear responses exhibited 
pseudo-adaptive kinetic behavior. Such unexpected observations 
have been explained. The results offer new insights into possible 
quantitative effects of environmental noise on the chemotaxis of E. 
coli and other bacteria. 
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Introduction 
 
The movement of bacterial cells in response to chemical signals that 
are sensed has useful implications in a number of important areas 
such as wound healing (Agyingi et al. 2010), the operations of 
microfluidic systems for biochemical reactions (Ahmed et al. 2010) 
and the degradation of harmful chemicals in the environment 
(Pandey and Jain 2002, Singh and Olson 2008). Applications such 
as these, and the need to understand the chemosensory system from 
an evolutionary perspective as well as to design suitable genetically 
modified cells that are effective for specific requirements, have 
motivated many studies of bacterial chemotaxis. 
 
Since the large number of studies of the chemotaxis of bacterial 
cells are discussed in detail in many recent reviews (Baker et al. 
2006, Clauszitner et al. 2010, Steuer et al. 2011, Tindall et al. 2008a, 
b), the mechanisms of chemotaxis will not be discussed here, except 
to present a brief overview of those features that are relevant to the 
present study. Many investigations have used Escherichia coli as a 
model system because it has a simple chemosensory network that 
contains all the important features of chemotaxis observed in other 
bacteria also (Hamadeh et al. 2011, Rao et al. 2004, Tindall et al. 
2012). Moreover, the chemosensory network of E. coli has the 
smallest sufficiently robust network structure (Kollmann et al. 
2005). Robustness has in fact been recognized as a distinctive 
feature of the chemotaxis of many bacteria that allows them to 
return to their pre-disturbed state on prolonged exposure to a 
disturbance. This is also the central theme of the work reported here 
because we show that robustness may not be sustained in all features 
if the disturbance(s) affects certain critical parameters of the 
chemosensory network. 
 
The possibility of exposure to long-duration disturbances is realistic 
because the environmental conditions in which many bacteria 
function are not static or changing smoothly but contain fluctuations 
whose characteristics may vary with time (Patnaik 2006, Xu and 
Tao 2006). These fluctuations are often referred to as ‘noise’. In 
addition to noise from the environment, there are fluctuations inside 
the cells themselves, mainly due to the small sizes and 
concentrations of the biological molecules and variations in 
temperature, thus making reactions among them stochastic rather 
than deterministic (Kaern et al. 2005, Paulsson 2004, Raser and 
O’Shea 2005). In the case of bacterial chemotaxis, yet another 
source of noise that is partly associated with the cells is that present 
at the sites of chemical binding between the molecules in the 
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environment that initiate chemotaxis and the receptors of the cells 
that detect these molecule, bind to them and thereby generate a train 
of signals that eventually results in preferred movement of the cells 
toward the chemoattractant (Andrews et al. 2006, Hornung and 
Barkai 2008). 
 
An important consequence of the noise-affected probabilistic 
collisions among the species involved in the chain of reactions that 
constitute the chemotactic signal propagation pathway is that the 
parameters of the component reactions are not ‘crisp’ well-defined 
constant numbers but may fluctuate with time. Since kinetic 
parameters depend on temperature, both molecular fluctuations and 
temperature fluctuations (Oleksink et al. 2011) contribute to 
variations in these parameters. The mechanistic basis and modeling 
of molecular kinetics under such conditions are elegantly discussed 
by Paulsson (2005), who pointed out that the noise present in 
cellular processes causes the ‘parameters for protein synthesis (to) 
vary randomly’ and to change dynamically as time progresses. This 
thesis is supported by his later work (Paulsson and Elf 2006), where 
quantitative effects on reaction rate equations are discussed. 
 
Analyses such as these underline the significance of parametric 
fluctuations in determining the course of chemosensory signal 
transductions in a population of cells, and consequently the 
chemotaxis of the cells. As earlier studies have shown (Jiang et al. 
2010, Patnaik 2008, Yi et al. 2000), response coefficient analysis 
provides a convenient and informative method to analyze the effects 
of small but sustained changes in reaction parameters on 
chemotactic performance. The present study therefore employs this 
method with an evolutionary model of chemotaxis proposed 
recently to evaluate the effects of parametric perturbations on 
population behavior. 
 
Overview of E. coli Chemotaxis 
 
Since a number of excellent tutorial articles have been published on 
the E. coli chemosensory system and its functioning (Baker et al. 
2006, Berg 2000, Kollmann et al. 2005), only a short overview is 
provided here for readers not familiar with the subject. 
 
The chemotactic movements of cells of E. coli are controlled by the 
chemosensory system shown schematically in Figure 1. The 
chemotaxis machinery is composed of broadly three main units: (i) 
chemoreceptors, which detect chemicals in the environment that are 
favorable to the cells and bind to them, (ii) a signal transduction  

 
 
Figure 1. Pictorial representation of the chemosensory network of 
Escherichia coli. Modified and redrawn with permission from Andrews et al. 
(2006). 
 
system that processes information received from the 
chemoreceptors, and generate instructions for (iii) the rotary motors, 

which in turn rotate clockwise (CW) or counter–clockwise (CCW), 
thereby causing the cells to ‘run’ or ‘tumble’. The last two terms are 
the final manifestations of chemotaxis, and they will be defined 
presently. 
 
The response of the system is encoded by six essential genes – 
CheA, CheB, CheR, CheW, CheY and CheZ – and five partially 
redundant chemoreceptor genes – aer, tap, tar, trg and tsr. The 
epithet Che here signifies chemotaxis. CheA is a histidine protein–
kinase that catalyzes the transfer of phosphoryl groups from ATP to 
one of its histidine imidazole side-chains, from where it is 
transferred to an aspartyl side-chain of the CheY protein. The 
phosphorylated CheY (CheY~P) then dissociates from CheA, 
diffuses through the cytoplasm and binds to the flagellar motor 
switch. The bound CheY~P functions as an allosteric regulator that 
governs the equilibrium between CW and CCW rotations of the 
motor. Fluorescence resonance energy transfer measurements 
indicate that non-phosphorylated CheY does not bind to the motors 
(Sourjik and Berg 2002). The phosphatase CheZ plays a key role in 
mediating the dephosphorylation of CheY~ P (Vaknin et al. 2004). 
 
The concentration of CheY~P is modulated through the five 
chemoreceptors – Aer, Tap, Tar, Trg and Tsr – each corresponding 
to one of the redundant chemoreceptor genes mentioned earlier. 
These receptors are structured as multimeric complexes that consist 
of dimers packed hexagonally into trimers (Briegel et al. 2012, 
Francis et al. 2004) linked by the CheA and CheW proteins. As seen 
in Figure 1, the domains of the chemoreceptors that bind to 
compatible ligands of the chemoattractant molecules are outside the 
cytoplasmic membrane whereas the rest of the chemosensory 
network is in the cytosol. Binding of the receptors to the 
chemoattractant molecules triggers a sequence of events that 
culminates in CW or CCW rotation of the motors, thereby 
determining whether a cell will run or tumble until the next signal is 
received. A cardinal event in this sequence is reverse methylation of 
the receptor. Methylation has a complex role that is discussed 
elsewhere (Baker et al. 2006, Kollman et al. 2005, Rao et al. 2004), 
but one significant effect it has, apart from governing cell motility, 
is enhancement of robust perfect adaptation. 
 
Briefly, robust perfect adaptation means that a population of cells 
exposed to a continuous disturbance (or noise) eventually reverts to 
its state before the start of the disturbance. Many, but not all, strains 
of E. coli posses this property. In other words, adaptation is 
widespread but not universal. Further, not all properties of a 
chemosensory network display robust perfect adaptation. The 
important of this caveat will be discussed later in the context of the 
results of the present work. 
 
As state above, the final effect of the propagation of a 
chemoattractant signal through a chemosensory network is the 
rotation of the flagella motors. This means the movements of a cell 
are executed through filamentous flagella that project outward and 
rotate either CW or CCW, depending on the direction of rotation of 
the motors that are attached to their bases. CCW rotation causes the 
flagella to move in a coordinated bundle, and the result is a straight 
line motion (called a ‘run’). Likewise, CW rotation disentangles the 
flagella, causing the filaments to move independently and not in 
unison; the result is a change of orientation of the cell (i.e. a 
‘tumble’). For E. coli the duration of a run is typically about 1 sec, 
whereas a tumble takes about a tenth of this duration (Berg 2000). 
The main purpose of the tumbles is to reorient the cells frequently 
so that unidirectional runs do not lead a population away from the 
chemoattractant. 
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The durations of the runs and tumbles are short and comparable to 
the time scales of events in the chemosensory signal transduction 
pathway (Baker et al. 2006, Samuel and Berg 1995). Thus, it is 
realistically possible for fluctuations in cellular processes to 
interfere with the chemosensory response. While this postulate 
forms a basic tenet of the original Barkai-Leibler model (Alon et al. 
1999), recent studies provide additional support to their hypothesis. 
One notable work is that of Korobkova and coworkers (2006), who 
showed that while stochastic fluctuations are possible, the time 
interval between the CW and CCW rotations of the flagellar motor 
of E. coli follows an exponential distribution. Nishikawa and 
Shibata’s (2010) more recent work has shown that while bacteria 
achieve robust perfect adaptation under fluctuating conditions on a 
statistical average, local sensory systems exhibit nonadaptive 
fluctuations that are sensitive to the environmental ligand 
concentration. When the external chemoattractant concentration 
varies with both space and time, the chemotaxis motion becomes 
dampened at a rate controlled by the cell’s adaptation rate (Jiang et 
al. 2010). These observations highlight the impact of noise on 
chemotactic behavior. 
 
Chemotaxis model and respone coefficient analysis 
 
Soyer and Goldstein (2011) proposed recently a mathematical 
model for the chemotaxis of E. coli that extends earlier work and 
overcomes some of the weaknesses of previous models. Their model 
has five salient features which differentiate it from most other 
models: (i) finite bacterial tumbling times, (ii) finite rates of bacteria 
entering and exiting the tumbling state, (iii) three sub-populations of 
cells -- those traveling to the left, those traveling to the right and 
cells that are tumbling, (iv) a parameter that governs the sensitivity 
of the chemotaxis pathway, and (v) a Gaussain distribution of the 
chemoattractant that travels in the direction of fluid flow, i.e. to the 
right, in a microreactor tube. The chemotactic performance (CP) 
was measured in terms of the binding between the chemoattractant 
ligands and the corresponding chemoreceptors. Soyer and 
Goldstein’s (2011) explanation for this choice, as opposed to the 
conventional choice of cellular movement per se, was that binding is 
the trigger that sets in motion a chain of events that ultimately 
generate cellular movement. 
 
On this basis, Soyer and Goldstein (2011) proposed the equations of 
conservation given below for the three subpopulations of E. coli 
present in the microreactor. 
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Equations (1)–(3) indicate that radial dispersion has been neglected; 
this may be a reasonable assumption in view of the small radius of a 
microtube and previous reports of radial dispersion being much 
smaller than axial dispersion (Rothstock et al. 2008, Sotowa et al. 
2008). The rates at which the left-moving cells and the right-moving 
cells enter the tumbling state are characterized by α୐and αୖ; these 
parameters were considered to be modulated by a based rate α୓, 
whereas β was assumed to be constant and equal for both types of 
cells. The second assumption implies that, after completing a 
tumble, a cell has equal probability of traversing left or right; this 
accounts for the presence of β/2 in Eqs.(1) and (2) and β in Eq.(3). 
To have a simple model with realistic features, Soyer and Goldstein 

(2011) described the sensitivity of the chemotaxis pathway by a 
single lumped parameter λ. It may be clarified here that their notion 
of sensitivity departs somewhat from the conventional definition of 
sensitivity, which has been called the response coefficient here. 
They postulate that λ controls the level of modulation of α0 by the 
chemotactic signal, which they refer to as the sensitivity. 
 
While β is constant, α୐and αୖ are described by the equations shown 
in Table 1. Soyer and Goldstein (2011) proposed a Gaussian 
distribution of the chemoattractant. This distribution was maintained 
in the present analysis for two reasons: (a) to be consistent with their 
work and (b) to be physically compatible with the residence time 
distribution in tubular flow with finite axial mixing (Danckwerts 
1953, Gunther et al. 2004).  In that case, 
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By equating A′ሺxሻand	A′′ሺxሻ to zero, the corresponding maxima can 
be obtained as: 
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These expressions may be inserted in the equations for α୐and αୖ in 
Table 1. 

Now, the response coefficient, ߛ௜௝, of any variable with 
respect to a parameter pj may be defined as (Leaf et al. 1998): 

 γ୧୨ ൌ
ப୳౟
ப୮ౠ
		                                                                                 (8) 

 
Since the variables and the parameters may sometimes differ widely 
in their magnitudes and absolute variations, the ߛ௜௝ are usually 
normalized as: 
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Geevan et al. (1990) have shown that the response coefficients in a 
multi-variable multi-parameter system evolve with time according 
to: 
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where M is the number of variables and N the number of 
parameters. From Soyer and Goldstein’s (2011) model, it is clear 
that N=4, the parameters being α0, β, λ and d. To determine the 
value of M, we write Eqs.(1)–(3) in the general form: 
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where uത = [L R S]T, pത = [α0  β λ d]T and u′ഥ  denotes the derivatine of 
uത with respect to x. The superscript T denotes the transpose of a 
vector. Now we apply one-point orthogonal collocation (Villadsen 
and Stewart 1967) in x to reduce the three partial differential 
equations to six ordinary differential equations in time at the 
collocation points x = ඥ1/3 and x = 1. Note that these are 
normalized distances. Equations (11) then become: 
ୢ୳౟
ୢ୲
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where i = 1 and 2 correspond to L at xൌ	ඥ1/3 and x = 1 
respectively, i = 3 and 4 correspond similarly for R, and i = 5 and 6 
for S. The equations for ߛො௜௝, i.e. Eqs.(10), do not depend on x and 
hence do not have to be collocated. However, the collocated 
Eqs.(12) now indicate that  M = 6. Therefore Eq.(10) contains M*N 
= 6*4 = 24 ordinary differential equations for the response 
coefficients; these were solved together with the six equations in 
Eq.(12). 
 
For the initial conditions of Eq.(12) we recognize that at the start of 
chemotaxis there are equal numbers of cells moving to the left or 
right or tumbling. Therefore, considering that the total normalized 
concentrations of E. coli is unity, i.e. L+R+S = 1, we may apply the 
initial condition: 
 
t = 0: Li = Ri = Si = 1/3; i = 1(1)6                                  (13) 
 
As explained by Geevan et al. (1990), the starting values of the 
response coefficients are zero; therefore: 
 
t ൌ 0:	γො୩୨ ൌ 0	∀	k, j				                                                            (14) 

 
Now, Eqs.(10) and (12)–(14) define the complete problem 
comprising 30 ordinary differential equations with their initial 
conditions. These were solved numerically by the Runge-Kutta-Gill 
method with variable step size. Since our interest is in the response 
coefficients at the outlet of the microbioreactor, these coefficients 
for L2, R2 and S2 with respect to α0, β, λ and d are presented in 
Figures 2-13 and discussed in the next section. There are 12 sets of 
plots because Soyer and Goldstein (2011) applied their model to two 
types of responses of the cells: (a) linear and (b) adaptive. While the 
basic conservation equations remain the same, the equations for α୐ 
and αୖ differ between linear and adaptive responses (Table 1). 
 
Table 1. Equations for the parameters α୐ and αୖ for E. coli cells  
with linear response  and adaptive response (Soyer and Goldstein 2011). 
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Application and Discussion 
 
Soyer and Goldstein’s (2011) model [Eqs.(1)–(3)] has four basic 
parameters: α0, β, λ and d. Hence the response coefficients with 
respect to each of these parameters were computed according to 
Eqs.(10) and (12)-(14). The coefficients were determined for the 
two basic types of responses studied by them: (i) linear and (ii) 
adaptive. The values of the parameters differ between these two 
situations and so are the responses expected to be. These values are 
shown in Table 2. 
 
Table 2. Values of the parameters used in the simulations (Soyer and 
Goldstein 2011). 

Type of response α଴ β λ d v 

Linear 0.01 0.02 3.6 0.01, 1.0 1.0 

Adaptive 0.01 100.0 100.0 0.01, 1.0 1.0 

 
Figures 2 to 13 portray the evolutions of the response coefficients 
with time for different situations. Apart from the cases described 
above, two rates of motion of the chemoattractant distribution 

profile were also considered: (i) d = 0.01, which represents a 
distribution moving very slowly, i.e. nearly stationary, and (ii) d = 
1.0, which characterizes a profile moving 100 times faster. By 
comparing d with v (Table 2), we also observe that for d = 1.0 the 
chemoattractant moves at a speed comparable to that of the bacteria. 
An overview of the 12 sets of response coefficients shown in the 
figures suggests that the responses of the population of cells differ 
widely in their nature as well as their magnitudes; thus it appears 
prima facie difficult to derive general inferences. However, a more 
detailed analysis reveals similarities and differences that follow 
certain patterns which provide insight into the behavior of the 
population of cells. 
  
For the simplest case of linear bacterial responses in a slowly 
moving attractant pool, the response coefficient of bacteria moving 
to the left increase with time for β and d, and decrease for α0 and λ. 
Bacteria moving to the right exhibit completely different responses: 
the former pair of coefficient decreases as time advances, whereas 
the latter pair increases. There is, however, one similarity between 
the response coefficients with respect to β and d for the two 
bacterial populations. Both sets reach maxima (Figure 2) or minima 
(Figure 3) at the same time of about 14 min from the start. These 
observations are mutually compatible since the response of bacteria 
moving to the right and those moving leftward are qualitative mirror 
images of each other. 
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Figure 2. Response coefficient plots for left moving E. coli cells with linear 
response in a slow-moving chemoattractant concentration distribution. 
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Figure 3. Response coefficient plots for right-moving E. coli cells with linear 
response in a slow-moving chemoattractant concentration distribution. 
 
Bacteria that are in a state of tumbling have equal probability of 
moving left or right after the tumble is completed. Their response 
coefficients may therefore be expected to have some features of the 
left-moving and right-moving populations, and Figure 4 supports 
this inference. The equal probability of moving left or right for cells 
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currently in a tumbling state is also reflected in the peaks for α0 and 
λ occurring at 7 min, which is one half the time at which the 
extrema are seen in Figures 2 and 3. 
 
E. coli with adaptive responses display response coefficient profiles 
that are markedly different from those of cells with linear responses. 
However, self-consistency is preserved here too. Contrary to the 
profiles of Figures 2 and 3, the response coefficients in Figure 5 (for 
left-moving cells) and Figure 6 (for right-moving cells) are 
practically constant until about 14 min and then either decrease or 
increase sharply. However, there is a short interval (of about a 
minute) between these two phases during which the response 
coefficients pass through maxima (Figure 5) or minima (Figure 6). 
This transient phase could be a brief interlude of stochastic 
resonance, which will be discussed in further detail later. 
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Figure 4. Response coefficient plots for tumbling E. coli cells with linear 
response in a slow-moving chemoattractant concentration distribution. 
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Figure 5. Response coefficient profiles for left-moving E. coli cells with 
adaptive response in a slow-moving chemoattractant concentration 
distribution. 
 
Figure 7 has yet another feature that is in contrast with the 
corresponding profiles for linear response (Figure 4). Whereas for a 
linear response the cells in a state of tumbling have response 
coefficients that combine the features of the other two sub-
populations, for an adaptive response the response coefficients are 
similar to those of cells moving to the left. This closeness to the 
behavior of one sub-population suggests that one effect of 
environmental noise is to bias the preference of the tumbling cells 
toward the left-moving population. The obvious question is: why 
should the bias be for this particular direction and not to the right? 
In the absence of conclusive experimental evidence, one conjecture 
is that since the environmental noise enters from the left through the 

feed stream, and for a slow-moving distribution of the 
chemoattractant (recall that d = 0.01 in all cases) the fluctuations in 
the feed stream have sufficient time to influence the chemoreceptor-
ligand binding kinetics, the cells in a tumbling state are more likely 
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Figure 6. Response coefficient profiles for right-moving E. coli cells with 
adaptive response in a slow-moving chemoattractant concentration 
distribution. 
 
to exhibit a behavior that is biased toward the source of the noise, 
i.e. toward the left. This might explain the similarity between the 
response coefficients of the tumbling cells and those of cells moving 
to the left. 
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Figure 7. Response coefficient profiles for tumbling E. coli cells with 
adaptive response in a slow-moving chemoattractant concentration 
distribution. 
 
For a chemoattractant concentration distribution that is moving fast 
toward the right (d=1.0), the response coefficients of the cells 
moving left-ward, i.e. away from the chemoattractant (Figure 8) are 
remarkably similar to those for adaptive response at d=0.01, (Figure 
5). This anomalous ‘adaptive’ behavior may be explained by 
recognizing that when the bacteria and the chemoattractant move in 
opposite directions, and the latter is travelling fast, the cells ‘see’ 
little of the chemoattractant, except perhaps the tail portion of the 
Gaussian distribution of the attractant. The left-moving cells are 
thus ‘adapted’ to a region substantially depleted of the 
chemoattractant, so it is not surprising that bacteria with a normally 
linear response display (false) adaptive behavior. The falsity of this 
pseudo-adaptive behavior is also evident in the response coefficient 
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plot with respect to the rate of motion, d, of the chemoattractant in 
Figure 8. This plot is practically constant until about 4½ hours, after 
which it rises abruptly. During the constant phase, the cells moving 
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Figure 8. Response coefficient plots for E. coli cells with linear response 
moving to the left in a fast-moving chemoattractant concentration profile. 
 
to the left are still within the wake of the Gaussian distribution, and 
the transition to the increasing regime signifies complete cut-off 
from the wake. 
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Figure 9. Response coefficient plots for E. coli cells with linear response 
moving to the right in a fast-moving chemoattractant concentration profile. 
 
Despite the differences between the cases of a relatively static 
chemoattractant (d=0.01) and a concentration profile that is 
traveling much faster (d=1.0), internal consistency is maintained in 
both cases. As for d=0.01, the response coefficient plots for the 
bacteria moving to the right in a fast-moving chemoattractant field 
(Figure 9) are virtual mirror-images of those for the sub-population 
moving the other way (Figure 8) under the same conditions. This 
similarity is also maintained for the cells in a tumbling state, whose 
response coefficients (Figure 10) resemble those of the cells moving 
left (Figure 8) rather than those moving right. Hence the explanation 
offered for this observation in the case of d=0.01 is valid for d=1.0 
also. 
 
E. coli with adaptive responses display response coefficient profiles 
that are markedly different from those of cells with linear responses. 
However, self-consistency is preserved here too. Contrary to the 
profiles of Figures 2 and 3, the response coefficients in Figure 5 (for 
left-moving cells) and Figure 6 (for right-moving cells) are 
practically constant until about 14 min and then either decrease or 

increase sharply. However, there is a short interval (of about a 
minute) between these two phases during which the response 
coefficients pass through maxima (Figure 5) or minima (Figure 6). 
This transient phase could be a brief interlude of stochastic 
resonance, which will be discussed in further detail later. 
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Figure 10. Response coefficient plots for tumbling E. coli cells with linear 
response in a fast-moving chemoattractant concentration profile. 
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Figure 11. Response coefficient profiles for E. coli cells with adaptive 
response moving to the left in a fast-moving chemoattractant concentration 
distribution. 

Time

0 2 4 6 8 10

R
es

po
ns

e 
co

ef
fic

ie
nt

0

100

200

300

400

500

600

700
0



d

 
Figure 12. Response coefficient profiles for E. coli cells with adaptive 
response moving to the right in a fast-moving chemoattractant concentration 
distribution. 
 
The response coefficients of E. coli possessing an adaptive response 
(Figure 11-13) show trends that might seem unexpected. The 
coefficients either decrease or increase monotonically, barring a 
shallow maximum at around 4 h for cells moving to the left. This 
apparently anomalous behavior is discussed below. It may be noted, 
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however, that, regardless of the trends of the plots, the tumbling 
cells again have response coefficient profiles that are similar to 
those of the cells moving to the left, as observed also for adaptive 
responses with d=0.01 (Figure 7) and pseudo-adaptive responses 
with d=1.0 (Figure 10). Similar reasons therefore account for this 
resemblance, and the widely different situations in which it has been 
observed suggest that the phenomenon and its explanation may be 
universally true for E. coli. 
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Figure 13. Response coefficient profiles for tumbling E. coli cells with 
adaptive response in a fast-moving chemoattractant concentration 
distribution. 
 
An important semantic clarification is necessary for all the figures 
discussed. The terms ‘increasing’ or ‘decreasing’, or their 
synonyms, have been used to covey upward or downward trends. 
However, in terms of the magnitudes of the response coefficients, 
the absolute values of a ‘decreasing’ trend may actually be larger 
than those of an ‘increasing’ trend with which it is being compared. 
The magnitudes as well as the signs of the response coefficients are 
meaningful since they convey information about the nature of the 
responses to external noise. From this perspective, although the 
tumbling cells with a linear response in a slow-moving 
chemoattractant distribution (Figure 4) have some features of their 
left-moving (Figure 2) and right-moving (Figure 3) counter-parts, 
the magnitudes of the response coefficients are one to four orders of 
magnitude larger. For bacteria with adaptive responses under the 
same conditions, the tumbling cells have response coefficients 
(Figure 7) whose trends are similar to those of cells moving to the 
left (Figure 5) but magnitudes are closer to those of cells moving 
right (Figure 6). Nevertheless, the signs of the coefficients are again 
the same as those of the left-moving cells and opposite to that of the 
sub-population navigating to the right. Such partial similarities of 
the tumbling cells with the other two sub-populations are also seen 
for a fast-moving chemoattractant profile (d=1.0), and it occurs for 
bother linear (Figure 8-10) and adaptive (Figure 11-13) responses. 
 
In terms of magnitudes, it is also seen that, in general, (a) tumbling 
cells have much larger response coefficients than those moving to 
the left or right, and (b) the response coefficients for adaptive 
responses are larger than those for linear responses. The second 
observation might seem to contradict the ‘accepted’ conventional 
notion that adaptive behavior is a natural corollary of robust 
performance (Alon et al. 1999, Stelling et al. 2004). Clarifying this 
apparent contradiction, Patnaik (2007) explained that robustness 
merely implies that certain functional features are maintained in the 
presence of disturbances, but not all features. For instance, 
chemotactic motility may be robust but the adaptation time is not 
(Kollmann et al. 2005, Rao et al. 2004). Similarly, the present 
analysis is based on the chemotaxis model of Soyer and Goldstein 
(2011), who defined the chemotactic performance in terms of the 

binding between the chemoreceptors and the chemical ligands; this 
process is external to the chemosensory network and is therefore not 
within the domain of the cell’s feed-back control mechanisms that 
contribute to robust perfect adaptation (Clausznitzer et al. 2010,  
Hamadeh et al. 2011, Hornung and Barkai 2008, Steuer et al. 2011). 
Moreover, as Nishikawa and Shibata (2010) have explained, even an 
adaptive chemosensory system may display nonadaptive 
fluctuations. This discussion also clarifies the observed 
‘nonadaptive’ variations in the response coefficients for E. coli cells 
possessing adaptive responses in a rapidly moving chemoattractant 
concentration profile (Figures 11-13). 
 
That nonadaptive dynamics is not an aberration is also explained by 
Goldstein and Soyer (2008), whose simulation studies showed that 
‘stimulus scarcity and fluctuations …….. result in complex pathway 
dynamics that result both in adaptive and nonadaptive dynamics’. 
These are precisely the conditions in which nonadaptive dynamics 
has been observed here. In their later work (Soyer and Goldstein 
2011) they have drawn attention to the fact that previous 
observations that adaptive response dynamics provides optimal 
chemotactic performance (Celani and Vergassola 2010, Clausznitzer 
et al.2010, Jiang et al. 2010, Patnaik 2007) had assumed tumbling to 
be instantaneous. However, although the duration of a tumble is 
about a tenth of the duration of a run (Berg 2000), it is not 
negligible, and accounting for the tumbling interval has indeed been 
shown to alter the optimal chemotactic performance (Celani and 
Vergassola 2010,  de Gennes 2004, Goldstein and Soyer 2008). 
 
It may be recalled that earlier in this discussion we had referred to 
short-duration maxima (Figures 2, 5 and 8) and minima (Figures 3, 
6 and 9) observed in some situations. We may invoke the concept of 
stochastic resonance to explain these phenomena. However, we note 
first that the three maxima pertain to cells moving to the left, and the 
minima to cells travelling to the right under the same conditions. 
Thus, the concept of mirror images which was referred to earlier is 
maintained here also. 
 
Stochastic resonance may be defined broadly as a ‘phenomenon 
where the presence of (controlled) noise in a nonlinear system is 
better for output signal quality than its absence’ (McDonnell and 
Abbott 2009). It is important to recognize in this definition that the 
system has to be on nonlinear, which the chemotaxis framework of 
E. coli is. The word ‘controlled’ in parentheses has been inserted by 
this author because uncontrolled noise is often harmful whereas 
optimally controlled noise may be beneficial (Andrews et al. 2006, 
Chen et al. 2005, Patnaik 2012). Even though the control of 
environmental noise (through appropriate filters) was not 
implemented in this study, cells of E. coli and other bacteria have 
internal feedback systems that attenuate the propagation of noise 
(Andrews et al. 2006, Hamadeh et al. 2011, Hornung and Barkai 
2008, Sartori and Tu 2011). The inflow of noise and the attenuation 
processes being complex, nonlinear and time varying, it is likely 
that during certain intervals of time the external noise inflow 
resonates with the intra-cellular noise systems and the results are 
observed as positive or negative increases in the response 
coefficients. Stochastic resonance has been postulated as a plausible 
explanation for enhanced performance not only in chemotaxis but a 
wide variety of biological processes (see McDonnell and Abbott 
(2009) and Hanggi (2002)] for examples). 
 
Conclusions 
 
Under natural conditions, bacteria such as E. coli experience noise 
within the cells and in the environment with which they interact. 
Different sources of noise vary differently with time and have both 
separate and combined reflects on the functioning of the cells. One 
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significant effect is fluctuations in the values of the kinetic 
parameters of the reactions that govern the chemosensory network 
and its control of chemotaxis of the cells. 
 
The role of uncertainty or variability in the kinetic parameters of the 
chemotaxis of E. coli in a microreactor was studied here through the 
response coefficients of the cells, derived from a chemotaxis model 
that considered three kinds of cells (a) those moving to the left at 
any instant of time, (b) those moving to the right, and (c) cells that 
are ‘tumbling’ and not ‘running’. The time-dependent response 
coefficients of these three sub-populations of cells differed widely 
for two types of responses -- (a) linear and (b) adaptive -- and for 
two speeds of the chemoattractant concentration distribution -- (a) 
slow movement and (b) fast motion. The differences could, 
however, be reconciled both among the response coefficients 
themselves and with the cells’ detection of a moving chemattractant. 
  
The results offered new insights into possible quantitative effects of 
environmental noise on the chemotaxis of E. coli. One noteworthy 
result was that although adaptive response confers robustness to 
bacterial chemotaxis for intra-cellular fluctuations, the influx of 
disturbances from outside may weaken robustness. Some features of 
the chemosensory system may even lose robustness through the 
impact of ‘strong’ disturbances, similar to that for intra-cellular and 
receptor-ligand binding noise. However, optimally filtered noise can 
improve chemotactic performance through stochastic resonance. 
This possibility is strengthened by performance enhancements 
observed for other biological systems through a similar process. 
 
Nomenclature 
 
All variables are dimensionless. 
A spatial concentration function of chemoattractant 
A'  derivative of A with respect to x 
Amax maximum value of A 
A'max maximum value of A' 
d rate of motion of the chemoattractant (to the right) 
L concentration of cells moving to the left 
R concentration of cells moving to the right 
S concentration of cells that are tumbling 
t time 
v swimming speed of the bacteria 
x distance along the microreactor length 
α0 parameter modulating basal values of α୐ and αୖ 
α௅ rate at which left-moving cells enter the tumble state 
αୖ rate at which right moving cells enter the tumble state 
β  rate at which bacteria exit the tumble state 
λ  parameter characterizing the sensitivity of the  
 chemotaxis pathway 
  ௜௝ response coefficient of i-th variable with respect toߛ
 j-th parameter 
 ௜௝ߛ ො௜௝ normalized value ofߛ
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