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Abstract 
 
One of the issues that arises today in the field of quantum circuits 
is how to synthesize a reversible circuit using the reversible gates. 
Due to the fact that the implementation of reversible circuits has 
high hardware costs, much effort has been made to find the circuit 
with the lowest cost. In this paper, we present a method that, by 
relying on the cycles in the truth table, produces a circuit in which 
these cycles are implemented, without changing in other 
combinations of the truth table. Therefore, for functions with low 
cycle sizes, they will generate much less expensive circuits than 
other methods. In addition, for functions with don’t care 
combinations or don’t care outputs, in this method, we have tried 
to reduce the number of cycles and their size, and hence the 
quantum cost of generated circuits, using these don’t cares. The 
proposed method of this article has improved the average costs 
between 27% and 40% in comparison with similar tasks in the 
case of circuits with a low cycle number and size. 

Keywords: Reversible Circuits, Cycle-based Approach, Don't 
Care Conditions, Quantm Computing. 

Introduction 

Irreversible gates have various drawbacks such as energy wasting 
as well as security weakness due to the possibility of attack 
through leakage power analysis. The advantage of using 
reversible gates is less power consumption, because classical 
gates that are not reversible will waste some energy in heat as a 
result of the loss of data per bit (Landauer, 1961). Therefore, in 
this section, the problem is implementing circuits using these 
gates and reducing the implementation cost such as quantum cost, 
gate number, depth of circuit, and so on. In (Saeedi et al., 2010) a 
method is proposed for the synthesis of reversible circuits, which, 
in order to reduce quantum cost and runtime, decomposes the 
circuit into predetermined blocks by an algorithm and perform 
synthesis at the level of these blocks.  

In the face of attacks that leakage power analysis can be done, 
reversible logic could well be used (Bhagyalakshmi & 
Venkatesha, 2010). The reason for this is that the reversible 
circuits do not waste power. This paper introduces a scheme that 
uses standard gates instead of the complex and costly gates used 
in previous work, and has designed the ALU for a cryptographic 
processor.  

The synthesis of reversible circuits is a challenge, with many 
work done on it. Different algorithms try to provide a more 
optimal implementation for each description of a reversible 
circuit, using reversible gates (Metodi & Chong, 2006). In 
(Miller, Maslov & Dueck, 2003, Maslov, Dueck & Miller, 2003, 
Maslov, Dueck & Miller, 2005), a method is proposed, which 
design the reversible circuit for the given truth table by the 
Toffoli gates. In this method, the truth table is scanned from top 
to bottom, and for each input combination, a gate is added to 
change the output combination to the desired value. This method 
ensures that the reversible circuit for the given truth table is 
made. But the optimality of the circuit has not been considered.  

In (Shende et al., 2003), methods for the synthesis of reversible 
circuits are presented. One of these methods is the 
implementation of cycles of size 2 called transposition. In this 
paper, we try to convert larger cycles into multiple transpositions, 
if necessary, and then implement these transpositions. The 
proposed method in this paper tries to convert larger cycles into 
multiple transpositions, if necessary, and then implement these 
transpositions. (Sasanian et al., 2009; Saeedi et al., 2010), using 
the method of the previous paper and extending it, have 
developed a method that adds the reversible gate to the circuit 
based on cycles that are recognized in the truth table of a 
reversible circuit. As a result, the truth table is fulfilled.  

In (Zakablukov, 2016), a method is proposed that converts the 
reversible function into distinct groups of permutations and then 
performs synthesis according to each group. In (Drechsler, Finder 
& Wille, 2011; Fazel, Thornton & Rice, 2007), the function is 
transformed into ESOP form and then implemented using the 
available reversible quantum gates such as Toffoli gate. In these 
methods, for simplicity of the proposed algorithms, for qubits in 
the circuit, instead of quantum quantities, the classical values of 
zero and one are taken into account. 
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In (Zhu et al., 2018) Based on the cycle-based method, all cycles 
in the truth table of a function are considered, and each cycle is 
defined and implemented using transposition cycles. In this 
method, for the implementation of an n-input function, only n-
input Toffoli gates will be used. In addition, all these methods are 
designed in such a way that, considering and trying to implement 
each cycle, the status of the truth table will generally changes, 
which can increases the number of necessary gate to function 
synthesis.  

Reversible circuits 

Reversible circuits are made from reversible gates. These gates 
have special properties that are not found in most classical gates. 
One of these properties is that their descriptive function is one to 
one. Therefore, the number of inputs and outputs of these gate is 
equal. Also, knowing the output value of these gates, you can find 
their input value. Figure 1 shows a number of known reversible 
gates. These gates are called basic reversible quantum gates and 
can be used for quantum implementation of each reversible gate 
(Nielsen & Chuang, 2000, Maslov et al., 2008). 

 
Fig. 1: Symbol of basic quantum gates and their description matrix (Nielsen & Chuang, 2000)

In this article, the NOT and the CNOT gates are used more than 
other gates. So a little explanation will be given about them. A 
NOT gate is a single-input gate that complements its logical input 
value. The CNOT gate is in fact the NOT gate with a control 
input whose control output value is always equal to the input 
control value and the target output value is equal to exclusive-OR 
of both inputs. Therefore, if the control input value is 1, the target 
output value will be complement of the target input value. This is 
also called the Feynman gate.  

Evaluation of quantum circuits is done by different criteria. One 
of these criteria is quantum cost. The definition of quantum cost 
is seen in the following.  

Definition 1: The quantum cost of single input and two input 
gates is 1. The quantum cost of gates with an input number of 
more than 2 is equal to the number of basic gates required to 
make that gate. The quantum cost of a circuit is equal to the total 
quantum cost of the gates that make up it.  

There are other reversible gates that can be built using basic 
gates. For example, the Toffoli Gate is one of them (Feynman, 
1986, Szyprowski & Kerntopf, 2011). The Toffoli gate is in fact 
the extension of the C-NOT gate, with the number of control 
inputs being more than 1 (Yanofsky, Mannucci & Mannucci, 
2008, Golubitsky, Falconer & Maslov, 2010). In Figure 2, the 
Toffoli gates with 2 and 3 control inputs are observed.  

 
Fig. 2. Toffoli gates with 2 and 3 control inputs 

In each gate, if the value of all control inputs is equal to 1, the 
target output value is equal to the complement of target input 
value and otherwise equal to the target input value. A set of all 
Toffoli gates with any number of inputs is a general set, and any 
reversible function can be implemented using gates of such a set 
(Miller, Maslov & Dueck, 2003).   

In this paper, the Toffoli gates will also be very useful. The 
expansion on the Toffoli gate is that its control inputs can be 
positive or negative (Fazel, Thornton & Rice, 2007). The Toffoli 
gate, as seen in Figure 3, has both control inputs. Positive control 
inputs are displayed with a black circle and negative control 
inputs with a white circle. The target output value in these gates 
will only be equal to the complement of the target input value, if 
the value of all positive control inputs are 1, and the value of all 
negative control inputs are 0.  

 
Fig. 3: Toffoli gate with 5 inputs and positive and negative 

control inputs (e = a b 'c d') 

To implement reversible circuits, it is sometimes necessary to add 
inputs to the circuit, which are constant over the duration of the 
circuit operation. These inputs are called Ancilla. There may also 
be a number of outputs in the circuit so that their final values in 
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all of our desired combinations are not significant. These outputs 
are called Garbage. For example, in the implementation of a 
reversible Full Adder circuit, because the output value of the 
circuit in the three different input combinations are the same, it is 
necessary to add two garbage outputs to make it reversible. Since 
the number of inputs and outputs of the reversible circuit is equal, 
one ancilla input will also be added to the circuit. In Section 3.3 
we will look more closely into this circuit. 

Cycle-based Method 
 
Preliminaries 
 
In this method, the reversible circuit synthesis is performed based 
on the cycles in the truth table. We will see the definition of the 
cycle.  

Definition 2: If the return function f is defined as: 

f (x1, x2, ..., xn) = (y1, y2, ..., yn)   (1) 

A cycle C = (c1, c2, ... ck) is defined as: 

f (c1, c2, ..., ck) = (c2, c3, ..., ck, c1) (2) 

This description means that 

f (c1) = c2, f (c2) = c3, ..., f (ck) = c1   (3) 

Each cycle in the truth table will be implemented by a sequence 
of Toffoli gates, and the sequence for each cycle is completely 
separate from other cycles. This method is designed so that the 
set of gates in the circuit to realize each cycle has no effect on the 
other rows of the truth table. Therefore, if we have a function 
with a large number of inputs, that the number and the size of the 
cycles of its truth table are low, the number of gates intended to 
implement it will be low, and the circuit will be relatively small 
and cost-effective. This feature has made our method unique to 
most of the previous methods. Because in most of the existing 
methods, for the synthesis of reversible circuits, the gates that are 
considered for realization of a desired row of the truth table will 
cause other states of the truth table to be changed and so there is 
no guarantee that the truth table, whose number and size of cycles 
are low, must necessarily be implemented by a small circuit with 
a low gate number. While the method presented in this paper only 
applies gate in the circuit for states, in which the input value with 
its corresponding output value is not equal and these gates will 
not change any other truth table states. 

Here are some definitions needed and then we will explain the 
method.  

Definition 3: Cb is the binary representation of the integer and 
non-negative C. 

Cb = Cb (n-1) Cb (n-2) ... Cb1 Cb0    (4) 

Cbi means the bit number i in the binary display is C. 

Example 1: For C = 13 we have: 

Cb = 1101, Cb0 = 1, Cb1 = 0, Cb2 = 1, Cb3 = 1  (5) 

Definition 4: F (v0, v1) is a Feynman gate whose control line 
connects to the input v0 and its target line to the input v1. This 
gate is visible in Figure 4. 

 
Fig. 4: The Feynman Gate F (v0, v1) 

Definition 5: Tcn+1 = T(v0 , v1 , … vn-1 , vn) is a Toffoli gate 
with n + 1 inputs whose control lines are connected to inputs v0 
to vn-1 and its target line to the input vn and We have: 
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The Toffoli gate control lines are connected to the inputs x0 to xn-

1 so that if cbi = 0, the control line is negative and if cbi = 1, the 
control line will be positive. The target line will also be 
connected to the xn input. 

Synthesis of cycles 
 
Suppose that the function f contains the cycle C = (c1, c2, ..., ck). 
The size of the cycle C is equal to the number of combinations in 
the cycle C. Cycles of size 1 mean that the inputs of the circuit 
with the corresponding output are the same. In these 
combinations, the input value must appear unchanged at the 
output and the gates in the circuit do not change the input value.  

For example, the truth table of Figure 5 can be described as the 
function f(0,1,2,3,4,5,6,7) = (2,3,6,1,7,5,0,4). The cycles of this 
function are C = (0,2,6), (1,3), (4,7), (5).  

Inputs Outputs 
a b c a b c 
0 0 0 0 1 0 
0 0 1 0 1 1 
0 1 0 1 1 0 
0 1 1 0 0 1 
1 0 0 1 1 1 
1 0 1 1 0 1 
1 1 0 0 0 0 
1 1 1 1 0 0 

Fig. 5: The truth table of a reversible function with 3 Inputs / 
Outputs 

As you can see, this function has a cycle of size 1, two cycles of 
size 2 and a cycle of size 3. The gates of this circuit should be 
arranged so that if the input takes “101” value, this combination 
will appear without changing in the output.  
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Cycles larger than 1 represent the combinations that should be 
converted into other combinations by the gates of the circuit. 
Cycles of size 2 are called Transpositions. For example, in the 
function corresponding to Figure 5, two transpositions are 
available: (1,3) , (4,7). To implement the cycle (4,7), if the binary 
combination of input is equivalent to 4, then the circuit gates 
must recognize it and convert the binary combination to 7, and 
vice versa. The same applies to the cycle (1.3).  

In the case of cycles that are larger than 2, the subject is slightly 
different. For example, for implementation of the cycle (0, 2, 6), 
the gates are placed in such a way that the input combination 0 is 
converted to the output combination 2, the combination 2 to 6, 
and the combination 6 to 0. We will examine how each kind of 
these cycles will be implemented.  

• Cycles with a size of 2: 

Assume that the cycle (c1, c2) exists in the description of the 
function f. Therefore, the circuit is designed to be converted to a 
binary combination equal to c2 if the binary combination of c1 is 
applied to the input, and vice versa. Assuming that this cycle is 
the only cycle larger than 1 in function f, other possible 
combinations of input must not be changed by the gates in the 
circuit. For this purpose, the  𝑇𝑇𝑛𝑛+1

𝑐𝑐1  Toffoli gate is located at the 
beginning of the circuit to detect the c1 combination at the input. 
The control lines of this gate will be connected to the circuit 
inputs (x0 to xn-1) and its target line will be connected to the input 
xn with initial value 0. The control lines connected to the inputs 
whose corresponding bits in the binary representation of c1 have 
a value of 1 are of positive type and others will be negative.  

If the input value of the circuit is the binary representation of the 
number c1, then the ancilla line xn will be 1 by this gate, 
otherwise the value of the line xn will remain unchanged at 0. In 
the following, we must have gates converting c1 to c2. For this 
purpose, the values of the lines where the binary representation of 
c1 and c2 is different in the bits corresponding to those lines 
should be changed. Therefore, Feynman gates are used where 
their control lines are connected to the ancilla input xn and their 
target lines to the corresponding inputs for bits with a value of 1 
in 𝑐𝑐1 ⊕  𝑐𝑐2. For example, consider the function f with the 
following definition:  

f(0,1,2,3,4,5,6,7) = (0,1,2,6,4,5,3,7)  (7) 

The only cycle of this function whose size is greater than 1 is 
(3.6). To implement this cycle, a Toffoli gate 𝑇𝑇43 =
𝑇𝑇(𝑥𝑥0, 𝑥𝑥1, 𝑥𝑥2′ ,𝑥𝑥3) is first needed to detect the value of 3 and two 
Feynman gates to convert it to 6. According to (8), the target line 
of the Feynman gates is connected to the inputs x0 and x2.  

1 2

1 2

3, 6
( ) 101b

c c
c c
= =
⊕ =

   (8) 

Therefore, the required Feynman gates are F (x3, x0) and F (x3, 
x2). These gates are shown in Figure 6(a). In this circuit, if the 
input has a value of 3, line x3 will get a value of 1, so the value of 

the bits x0 and x2 will be changed and the output will be 
converted to 6. Otherwise, none of the bits will change and the 
input value will appear exactly on the output.  

In the following, the same trend for converting c2 to c1 should be 
repeated. In this sense, a Toffoli gate is needed to detect c2 and 
several Feynman gates for converting c2 to c1.  

In the case of the function shown in (7), the F (x3, x0) and F (x3, 
x2) gates are used to convert the input value 6 to value 3. The full 
circuit of function f is shown in Fig. 6 (b). 

 
Fig. 6 - a. Reversible circuit piece to convert value from 3 to 6. b. 

The reversible circuit is related to function f in (7) 

• Cycles larger than 2 

If the function f has one cycle as C = (c1, c2, ..., ck), to implement 
it, there must be a set of gates in the circuit that can identify each 
input combination from the values c1 to ck and convert it Into the 
next combination in the C cycle. Therefore, a Toffoli gate 𝑇𝑇𝑛𝑛+1

𝑐𝑐1  is 
needed to detect c1 and multiple Feynman gates to convert it to 
c2. Similarly, gates are required to convert c2 to c3 and ... and 
finally, gates are required to convert ck to c1. Also, other possible 
combinations of input values should not be changed by these 
gates. For example, consider the function f as f(0,1,2,3,4,5,6,7) = 
(0,1,6,2,4,5,3,7). This function has a cycle of size 3 in the form 
(2, 6, 3). To implement this function, three sets of gates are 
needed to detect the input combination 2 and convert it to 6, 
convert 6 to 3, and convert 3 to 2. Figure 7 shows the circuit of 
the above function.  

 
Fig. 7: The reversible circuit for the function f(0,1,2,3,4,5,6,7) = 

(0,1,6,2,4,5,3,7) 

• Functions containing several distinct cycles 
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If the function f has more than one cycle larger than one, each of 
the cycles must be implemented separately. Suppose the function 
f has the following cycles:  

C = (c1, c2, … , ck) , (ck+1, ck+2, … , cp)  (9) 

You can see the circuit of the function f in Figure 8. This circuit 
consists of two parts. The first part is related to the first cycle of 

the function f and the second part of the second cycle. But we 
must be careful that if the input value of the circuit is one of the 
combinations c1 to ck, the value of the ancilla line xn will be 1 at 
the output of the first section of circuit, which will cause the gates 
in the second section to change the output value. Therefore, at the 
end of the first part of the circuit, there should be a Toffoli gate to 
zero down the value of line xn.  

 

 
Fig. 8: The reversible circuit for the function containing the cycles C = (c1, c2, ..., ck), (ck + 1, ck + 2, ..., cp)

To synthesize each function with any number of individual 
cycles, there should be a Toffoli gate after the circuit for each 
cycle. For example, a function whose truth table is shown in 

Figure 5, has a circuit as Figure 9. Remember that this function 
has cycles C = (0,2,6), (1,3), (4,7), (5).  

 

 
Fig. 9: The reversible circuit for the function f(0,1,2,3,4,5,6,7) = (2,3,6,1,7,5,0,4)

Improvement in proposed algorithm 

In this section, we will examine some of the improvements that 
can be made to the proposed algorithms in some cases and 
provide better results.  

Identifying adjacent transpositions 

If a cycle of size 2 in the form (c1, c2) exists in function f so that 
the binary representation of c1 and c2 are different in only one 
bit, then to implement it, the method presented in (Zhu et al., 

2018) can be used. In this method, a Toffoli gate with n inputs is 
used. The gate control lines will connect to the inputs 
corresponding to the bits with the same value in c1 and c2, and 
the gate target line will connect to input corresponding to the bit 
with different values in c1 and c2. For example, for 
implementation of cycle (2,6), instead of using the circuit of 
Figure 10.a, we can use the circuit of Figure 10.b. 

 

 
Fig. 10: Circuit related to the cycle (2,6). a. Synthesized with proposed algorithm b. Synthesized with the algorithm presented in (Zhu et 

al., 2018) 

For another example, the circuit corresponding to the truth table 
of Figure 5, with this improvement, is shown in Figure 11. Note 
that in this function, the cycle (1,3) can be implemented by the 

algorithm presented in (Zhu et al., 2018). The quantum cost of 
circuit in figure 9 is 131. While the quantum cost of this circuit 
decreases to 95 after the improvement.  
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Fig. 11: Reversible circuit related to function f(0,1,2,3,4,5,6,7) = (2,3,6,1,7,5,0,4) with improvement

• Adding an ancilla input per cycle 

In the proposed algorithm, as shown, after a circuit for each 
cycle, a Toffoli gate with n + 1 input must be placed to return the 
input value of xn to 0 again and prevent unwanted change by the 
gates of the next section of the circuit. Toffoli gates with high 
inputs have high quantum cost. But instead of using them after 
the implementation of each cycle, it is possible to use a new 
ancilla input for the next cycle. For example, the circuit related to 

the function f with cycles C = (0,5), (1,3,7), (2,4) which is 
generated by the proposed algorithm, is shown in Fig. 12.a. This 
function consists of three cycles. So, as seen, between the circuits 
of these three cycles, there are two 4-input Toffoli gates. The 
quantum cost of this circuit is 133. Now adding the two ancilla 
inputs to this circuit can eliminate the above gates and reduce the 
quantum cost of the circuit. The circuit obtained in this way is 
shown in Figure 12.b. The quantum cost of the improved circuit 
is reduced to 105.  

 

 
Fig. 12: The circuit related to the function f with cycles C = (0,5), (1,3,7), (2,4). a. With one ancilla input. b. With several ancilla inputs

• Considering don’t care combinations and 
outputs 

For some reasons, including adding ancilla inputs, some of the 
input combinations of the function may be considered don’t care. 
In such cases, the values that are considered as output of care 
combinations can be excluded and it is possible to assign other 
values in some way to the output of don’t care combinations in 
which the minimum number of cycles is created. To do this, we 
must try to consider the output value of any don’t care 
combination, if possible, equal to the input value of the same 
combination. Thus, since cycles of size 1 are generated, this 
algorithm does not consider any gate to implement the function.  

Also, if we have garbage outputs that have the don’t care value in 
all combinations, in the initialization of these outputs, it can be 
operated in such a way that, if possible, the input and output 
values are identical in different combinations.  

For example, the truth table in Figure 13 relates to a reversible 
Full Adder circuit with one ancilla input and two garbage outputs. 
As you know, due to the fact that the output of the 3 

combinations in this table is the same, in order to make this 
circuit reversible, two garbage outputs have to be added to it, so 
one ancilla input will also be added to the circuit.  

 
Fig. 13: The truth table of reversible Full Adder with don’t care 

combinations and outputs 
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To synthesize this circuit, uncertain situations must be identified 
in the truth table. For example, the value of outputs in 
combinations 0, 1, 6 and 7 is set to a value equal to the same 
input values in the output of these combinations, respectively. We 
set the output of other don’t care combinations with the goal of 
minimizing the number of cycles. The generated truth table and 
the circuit for it by the algorithm presented in [8] and also the 

proposed algorithm are shown in Figure 14. In this truth table, the 
desired function consists of a cycle C = (2,5,10,4,9,3). As can be 
seen, the quantum cost of the synthesized circuit by the algorithm 
presented in [8] is 273. While the quantum cost of the circuit 
generated by the proposed algorithm is 190.  

 

 
(a) 

 
(b) 

 
(c) 

Fig. 14: a. The truth table of reversible Full Adder without any don’t care. b. Synthesized circuit by the algorithm presented in (Zhu et 
al., 2018). c. Synthesized circuit by proposed algorith

Practical Results 
 
In this section we will compare the results of the proposed 
algorithm implementation with the previous work. Note that the 
algorithm of this paper has a very good performance compared to 
other algorithms in cases where the number of cycles of the 
function is small compared to the number of inputs. The reason 
for this is that our method adds the gate to the circuit only for 
combinations in the truth table, which does not have the same 
input value as the output and these gates will not affect other 
combinations. But in the previous methods, the gate that is added 
to the circuit for one combination in the truth table can also 
change other combinations and, for functions with limited 
number of cycles, large and expensive circuits may be produced. 

First, we examine a number of functions as examples and 
compare the results of each of the algorithms presented in (Miller, 
Maslov & Dueck, 2003; Zhu et al., 2018), as well as the proposed 
algorithm of this paper. Then we will compare the results of the 
implementation of these algorithms on different functions with 
the different number of inputs, as well as the different number 
and size of cycles in a table.  

First, consider the following function with the four inputs below: 

f(0,1,2,3,…,15) = (0,2,1,3,…,15)  (10) 

As can be seen, this function only contains a cycle C = (1,2). In 
fact, in only two possible input combinations, its output value 
varies with the input value. Figure 15(a) shows the synthesis of 
this function by the Transformation-based algorithm presented in 
(Miller, Maslov & Dueck, 2003). Figure 15.b shows the result of 
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the algorithm presented in (Zhu et al., 2018) on this function. And 
also in Figure 15.c, the circuit obtained from the algorithm of this 
paper, along with the quantum cost of each, is seen. As it is 

known, the previous algorithms produced a fairly large circuit for 
a simple function that varies in the input and output values in 
only two cases. This defect has been resolved in our algorithm.  

 
Fig. 15: Synthesis of a 4-input function with a cycle C = (1,2) a. By the method presented in (Miller, Maslov & Dueck, 2003) with 

quantum cost 72. b. By the method presented in (Zhu et al., 2018) with quantum cost 39. c. By proposed algorithm with quantum cost 62.

As the size and dimensions of the function become larger, the 
difference between the results of this algorithm and the previous 
works is revealed. As another example, we synthesize the 5-input 

function containing the cycle C = (1,2,5) by the above algorithms, 
the results of which are shown in Figure 16.  

 
Fig. 16: Synthesis of the input function 5 with a cycle C = (1,2,5) a. By the method presented in (Miller, Maslov & Dueck, 2003) with a 

quantum cost of 406. b. By the method presented in (Zhu et al., 2018) with a quantum cost of 232. c. The proposed algorithm with a 
quantum cost of 189.

In Table 1, the generated circuits are compared in terms of 
quantum cost for different functions, based on the dimensions of 
the circuit as well as the number of cycles and the size of the 
cycles in the description of the function. Generated circuits are 
simulated and analyzed by RC viewer tool. In this table, different 
functions are considered with different input numbers. These 
functions have a different number and size of the cycles. The 
results of the synthesis of these functions by the algorithm 
presented in (Miller, Maslov & Dueck, 2003), which is one of the 

basic algorithms for the synthesis of any type of function, the 
algorithm presented in (Zakablukov, 2016), which is based on the 
most recent cycle-based algorithms, as well as the proposed 
algorithm is presented in the table. The first to third column 
shows the number of inputs of the requested function, the number 
of cycles in the description of the function, and the size of these 
cycles. The next three columns represent the number of ancilla 
inputs that have generated the by algorithm in the synthesis of the 
circuit. The last three columns represent the quantum cost of the 
circuit generated by these three algorithms. If you look at the 
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values in the table, you will see that whatever the requested 
function is larger and the number and size of the cycles in the 

function is lower, the proposed algorithm yields a better result 
than the other two algorithms.  

Table 1 - Results of Synthesis Algorithms on Different Functions 

# Number of 
Inputs 

Size of 
Cycles 

Number 
of Cycles 

Number of Ancilla Inputs Quantum Cost 
(Miller, Maslov & 

Dueck, 2003) 
(Zhu et al., 

2018) 
Proposed 
Algorithm 

(Miller, Maslov & 
Dueck, 2003) 

(Zhu et al.,  
2018) 

Proposed 
Algorithm 

1 2 2 1 0 0 1 3 3 14 
2 3 2 1 0 0 1 18 15 30 
3 3 3 1 0 0 1 25 40 45 
4 3 5 2 0 0 1 21 45 50 
5 4 2 1 0 0 1 72 39 62 
6 4 3 1 0 0 1 112 104 93 
7 4 4 1 0 0 1 78 91 124 
8 4 5 1 0 0 1 74 104 155 
9 4 5 2 0 0 1 90 117 106 
10 5 2 1 0 0 1 252 87 126 
11 5 3 1 0 0 1 406 232 189 
12 5 4 1 0 0 1 250 203 252 
13 5 5 1 0 0 1 267 232 315 
14 5 5 2 0 0 1 324 261 218 
15 5 6 2 0 0 2 230 232 324 
16 5 6 2 0 0 1 320 234 283 
17 6 2 1 0 0 1 828 183 254 
18 6 3 1 0 0 1 1354 488 381 
19 6 4 1 0 0 1 834 427 508 
20 6 5 1 0 0 1 811 488 635 
21 6 5 2 0 0 1 1080 549 433 
22 6 6 2 0 0 2 796 2318 500 
23 6 7 1 0 0 1 1206 2196 897 
24 6 7 2 0 0 2 921 2135 584 
25 6 7 3 0 0 2 1080 1708 456 
26 6 8 1 0 0 1 1251 2501 1024 
27 6 8 2 0 0 2 1339 2318 666 
28 6 8 3 0 0 3 967 2135 666 

 

Table 2- Normalized results for comparison of cost and 
performance criteria 

# Cost 
Criteria 

(Miller, Maslov 
& Dueck, 2003) 

(Zhu et al., 
2018) 

Proposed 
Algorithm 

4 0/8 2/625 5/625 6/25 
9 1/6 5/625 7/3125 6/625 
1 2 0/75 0/75 3/5 
3 2/666667 3/125 5 5/625 
15 2/666667 7/1875 7/25 10/125 
16 2/666667 10 7/3125 8/84375 
28 2/666667 15/10938 33/35938 10/40625 
25 3/047619 16/875 26/6875 7/125 
8 3/2 4/625 6/5 9/6875 
14 3/2 10/125 8/15625 6/8125 
2 4 2/25 1/875 3/75 
7 4 4/875 5/6875 7/75 
27 4 20/92188 36/21875 10/40625 
24 4/571429 14/39063 33/35938 9/125 

6 5/333333 7 6/5 5/8125 
22 5/333333 12/4375 36/21875 7/8125 

13 6/4 8/34375 7/25 9/84375 
21 6/4 16/875 8/578125 6/765625 
5 8 4/5 2/4375 3/875 
12 8 7/8125 6/34375 7/875 
26 8 19/54688 39/07813 16 
23 9/142857 18/84375 34/3125 14/01563 
11 10/66667 12/6875 7/25 5/90625 
20 12/8 12/67188 7/625 9/921875 
10 16 7/875 2/71875 3/9375 
19 16 13/03125 6/671875 7/9375 
18 21/33333 21/15625 7/625 5/953125 
17 32 12/9375 2/859375 3/96875 

Average 7/3748 10/50725 12/87723 7/702009 
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To better analyze the results, we define the criterion for 
evaluating the complexity of the requested function as follows: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 2𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐∗𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑖𝑖𝑧𝑧𝑧𝑧
  (11) 

Also, because the quantum cost is dependent on the magnitude of 
the circuit, to quantify the cost of different circuits, we obtain the 
standardized normalized cost with the following definition: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
2𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖             (12) 

The results in Table 1 are normalized in Table 2. For a more 
straightforward comparison, we arrange the table based on the 
complexity criterion. As you can see, the larger the number of 
inputs in the circuit and the smaller the cycles and the size of the 
reversible function cycles are required, the quantum cost of the 
circuit generated by the proposed algorithm will be less than the 
previous algorithms. As explained earlier, this is because earlier 
algorithms usually check the truth table from top to bottom and 
they try to make each combination of the truth table and this will 
change the next lines. But the proposed method only affects the 
current combination, without changing other combinations.  

At the end of Table 2, we get the average value of each column. 
As can be seen, the proposed method has improved in the cost 
criterion, on average, between 27% and 40% in circuits where the 
use of this algorithm is justified.  

Conclusion 

One of the challenges in the field of modern integrated circuit 
technologies, such as quantum, optical, etc., is the synthesis of 
reversible circuits. A lot of work has been done in this field. 
Many of the works done on the synthesis of reversible circuits has 
focused on the cycles in their function. These tasks generally find 
the cycles in the truth table and try to implement them, using 
existing reversible gates. In these methods, when a combination 
of the truth table is considered and a gate is added to the circuit 
for its implementation, this gate usually changes the other 
combinations of the table. In cases where the original truth table 
has small cycles, these methods cause many gates to be used to 
implement such a function.  

The proposed method, by relying on the cycles in the truth table, 
produces a circuit in such a way that these cycles are 
implemented without any change in the other combinations of the 
truth table. Therefore, for functions with low-size cycles, it will 
generate much less expensive circuits than other methods. The 
cycles to which they are considered can be of the size of 2 or 
more than 2. In the end, we have made improvements that reduce 
the cost of the circuit generated or extend the application of this 
algorithm. In the case of cycles of size 2 that are between 
adjacent states, we can use less costly gates. Also, for functions 
whose descriptions have don’t care combinations or outputs, a 
method is proposed that reduces the number of cycles and their 
size and, consequently, reduces the cost of the generated quantum 
circuit.  

We compare the results with the other works presented in (Miller, 
Maslov & Dueck, 2003; Zhu et al., 2018). In (Miller, Maslov & 
Dueck, 2003), the basic method for the synthesis of reversible 
circuits was proposed in 2003, and (Zhu et al., 2018) a method 
based on the cycles in the truth table is presented in 2018. The 
results of the comparison show that in cases where a large 
function with a small number and size of cycles is present, the 
previous methods will generate a costly circuit for it. But the 
proposed method works much better in these cases. Considering 
the criteria for evaluation and comparison, for the above 
functions, the proposed algorithm improved the cost of generated 
reversible circuit between 27% and 40%. 
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