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Abstract

One of the issues that arises today in the field of quantum circuits
is how to synthesize a reversible circuit using the reversible gates.
Due to the fact that the implementation of reversible circuits has
high hardware costs, much effort has been made to find the circuit
with the lowest cost. In this paper, we present a method that, by
relying on the cycles in the truth table, produces a circuit in which
these cycles are implemented, without changing in other
combinations of the truth table. Therefore, for functions with low
cycle sizes, they will generate much less expensive circuits than
other methods. In addition, for functions with don’t care
combinations or don’t care outputs, in this method, we have tried
to reduce the number of cycles and their size, and hence the
quantum cost of generated circuits, using these don’t cares. The
proposed method of this article has improved the average costs
between 27% and 40% in comparison with similar tasks in the
case of circuits with a low cycle number and size.

Keywords: Reversible Circuits, Cycle-based Approach, Don't
Care Conditions, Quantm Computing.

Introduction

Irreversible gates have various drawbacks such as energy wasting
as well as security weakness due to the possibility of attack
through leakage power analysis. The advantage of using
reversible gates is less power consumption, because classical
gates that are not reversible will waste some energy in heat as a
result of the loss of data per bit (Landauer, 1961). Therefore, in
this section, the problem is implementing circuits using these
gates and reducing the implementation cost such as quantum cost,
gate number, depth of circuit, and so on. In (Saeedi et al., 2010) a
method is proposed for the synthesis of reversible circuits, which,
in order to reduce quantum cost and runtime, decomposes the
circuit into predetermined blocks by an algorithm and perform
synthesis at the level of these blocks.
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In the face of attacks that leakage power analysis can be done,
reversible logic could well be used (Bhagyalakshmi &
Venkatesha, 2010). The reason for this is that the reversible
circuits do not waste power. This paper introduces a scheme that
uses standard gates instead of the complex and costly gates used
in previous work, and has designed the ALU for a cryptographic
processor.

The synthesis of reversible circuits is a challenge, with many
work done on it. Different algorithms try to provide a more
optimal implementation for each description of a reversible
circuit, using reversible gates (Metodi & Chong, 2006). In
(Miller, Maslov & Dueck, 2003, Maslov, Dueck & Miller, 2003,
Maslov, Dueck & Miller, 2005), a method is proposed, which
design the reversible circuit for the given truth table by the
Toffoli gates. In this method, the truth table is scanned from top
to bottom, and for each input combination, a gate is added to
change the output combination to the desired value. This method
ensures that the reversible circuit for the given truth table is
made. But the optimality of the circuit has not been considered.

In (Shende et al., 2003), methods for the synthesis of reversible
circuits are presented. One of these methods is the
implementation of cycles of size 2 called transposition. In this
paper, we try to convert larger cycles into multiple transpositions,
if necessary, and then implement these transpositions. The
proposed method in this paper tries to convert larger cycles into
multiple transpositions, if necessary, and then implement these
transpositions. (Sasanian et al., 2009; Saeedi et al., 2010), using
the method of the previous paper and extending it, have
developed a method that adds the reversible gate to the circuit
based on cycles that are recognized in the truth table of a
reversible circuit. As a result, the truth table is fulfilled.

In (Zakablukov, 2016), a method is proposed that converts the
reversible function into distinct groups of permutations and then
performs synthesis according to each group. In (Drechsler, Finder
& Wille, 2011; Fazel, Thornton & Rice, 2007), the function is
transformed into ESOP form and then implemented using the
available reversible quantum gates such as Toffoli gate. In these
methods, for simplicity of the proposed algorithms, for qubits in
the circuit, instead of quantum quantities, the classical values of
zero and one are taken into account.
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In (Zhu et al., 2018) Based on the cycle-based method, all cycles
in the truth table of a function are considered, and each cycle is
defined and implemented using transposition cycles. In this
method, for the implementation of an n-input function, only n-
input Toffoli gates will be used. In addition, all these methods are
designed in such a way that, considering and trying to implement
each cycle, the status of the truth table will generally changes,
which can increases the number of necessary gate to function
synthesis.

Reversible circuits
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Reversible circuits are made from reversible gates. These gates
have special properties that are not found in most classical gates.
One of these properties is that their descriptive function is one to
one. Therefore, the number of inputs and outputs of these gate is
equal. Also, knowing the output value of these gates, you can find
their input value. Figure 1 shows a number of known reversible
gates. These gates are called basic reversible quantum gates and
can be used for quantum implementation of each reversible gate
(Nielsen & Chuang, 2000, Maslov et al., 2008).
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Fig. 1: Symbol of basic quantum gates and their description matrix (Nielsen & Chuang, 2000)

In this article, the NOT and the CNOT gates are used more than
other gates. So a little explanation will be given about them. A
NOT gate is a single-input gate that complements its logical input
value. The CNOT gate is in fact the NOT gate with a control
input whose control output value is always equal to the input
control value and the target output value is equal to exclusive-OR
of both inputs. Therefore, if the control input value is 1, the target
output value will be complement of the target input value. This is
also called the Feynman gate.

Evaluation of quantum circuits is done by different criteria. One
of these criteria is quantum cost. The definition of quantum cost
is seen in the following.

Definition 1: The quantum cost of single input and two input
gates is 1. The quantum cost of gates with an input number of
more than 2 is equal to the number of basic gates required to
make that gate. The quantum cost of a circuit is equal to the total
quantum cost of the gates that make up it.

There are other reversible gates that can be built using basic
gates. For example, the Toffoli Gate is one of them (Feynman,
1986, Szyprowski & Kerntopf, 2011). The Toffoli gate is in fact
the extension of the C-NOT gate, with the number of control
inputs being more than 1 (Yanofsky, Mannucci & Mannucci,
2008, Golubitsky, Falconer & Maslov, 2010). In Figure 2, the
Toffoli gates with 2 and 3 control inputs are observed.
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Fig. 2. Toffoli gates with 2 and 3 control inputs

In each gate, if the value of all control inputs is equal to 1, the
target output value is equal to the complement of target input
value and otherwise equal to the target input value. A set of all
Toffoli gates with any number of inputs is a general set, and any
reversible function can be implemented using gates of such a set
(Miller, Maslov & Dueck, 2003).

In this paper, the Toffoli gates will also be very useful. The
expansion on the Toffoli gate is that its control inputs can be
positive or negative (Fazel, Thornton & Rice, 2007). The Toffoli
gate, as seen in Figure 3, has both control inputs. Positive control
inputs are displayed with a black circle and negative control
inputs with a white circle. The target output value in these gates
will only be equal to the complement of the target input value, if
the value of all positive control inputs are 1, and the value of all
negative control inputs are 0.

a a
b b
> >
d d
e e

Fig. 3: Toffoli gate with 5 inputs and positive and negative
control inputs (e=ab'cd’)

To implement reversible circuits, it is sometimes necessary to add
inputs to the circuit, which are constant over the duration of the
circuit operation. These inputs are called Ancilla. There may also
be a number of outputs in the circuit so that their final values in
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all of our desired combinations are not significant. These outputs
are called Garbage. For example, in the implementation of a
reversible Full Adder circuit, because the output value of the
circuit in the three different input combinations are the same, it is
necessary to add two garbage outputs to make it reversible. Since
the number of inputs and outputs of the reversible circuit is equal,
one ancilla input will also be added to the circuit. In Section 3.3
we will look more closely into this circuit.

Cycle-based Method
Preliminaries

In this method, the reversible circuit synthesis is performed based
on the cycles in the truth table. We will see the definition of the
cycle.

Definition 2: If the return function f is defined as:
f(x1, x2, ..., Xn) = (Y1, Y2, ..., yn) ()
A cycle C =(c1, Cz, ... Ck) is defined as:
f(cs, c2, ..., ck) = (C2, C3, ..., Ck, C1) )
This description means that
f(ci1)=cz f(c2)=cs, .., f(ck)=c1 3)

Each cycle in the truth table will be implemented by a sequence
of Toffoli gates, and the sequence for each cycle is completely
separate from other cycles. This method is designed so that the
set of gates in the circuit to realize each cycle has no effect on the
other rows of the truth table. Therefore, if we have a function
with a large number of inputs, that the number and the size of the
cycles of its truth table are low, the number of gates intended to
implement it will be low, and the circuit will be relatively small
and cost-effective. This feature has made our method unique to
most of the previous methods. Because in most of the existing
methods, for the synthesis of reversible circuits, the gates that are
considered for realization of a desired row of the truth table will
cause other states of the truth table to be changed and so there is
no guarantee that the truth table, whose number and size of cycles
are low, must necessarily be implemented by a small circuit with
a low gate number. While the method presented in this paper only
applies gate in the circuit for states, in which the input value with
its corresponding output value is not equal and these gates will
not change any other truth table states.

Here are some definitions needed and then we will explain the
method.

Definition 3: Cy is the binary representation of the integer and
non-negative C.

Cb =Cbn-1) Cb(n-2) ... Cb1 Cho (O]
Cyi means the bit number i in the binary display is C.

Example 1: For C = 13 we have:

Cr=1101,Cp0=1,Cr1 =0,Cp2=1,Cp3 =1 (5)

Definition 4: F (v0, v1) is a Feynman gate whose control line
connects to the input v0 and its target line to the input v1. This
gate is visible in Figure 4.

vi vl
vl v

Fig. 4: The Feynman Gate F (v0, v1)

Definition 5: T®w1 = T(vo , V1, ... Va1, Va) is a Toffoli gate
with n + 1 inputs whose control lines are connected to inputs vo
to vna and its target line to the input vn and We have:

X, ifc; =1 )
vV, = . fori =0ton -1
xifc; =0 (6)
vV, =X,

The Toffoli gate control lines are connected to the inputs Xo to Xn-
1 S0 that if cwi = 0, the control line is negative and if coi = 1, the
control line will be positive. The target line will also be
connected to the X, input.

Synthesis of cycles

Suppose that the function f contains the cycle C = (ct, c2, ..., Ck).
The size of the cycle C is equal to the number of combinations in
the cycle C. Cycles of size 1 mean that the inputs of the circuit
with the corresponding output are the same. In these
combinations, the input value must appear unchanged at the
output and the gates in the circuit do not change the input value.

For example, the truth table of Figure 5 can be described as the
function f(0,1,2,3,4,5,6,7) = (2,3,6,1,7,5,0,4). The cycles of this
function are C = (0,2,6), (1,3), (4,7), (5).
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Fig. 5: The truth table of a reversible function with 3 Inputs /
Outputs

-
o

As you can see, this function has a cycle of size 1, two cycles of
size 2 and a cycle of size 3. The gates of this circuit should be
arranged so that if the input takes “101” value, this combination
will appear without changing in the output.
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Cycles larger than 1 represent the combinations that should be
converted into other combinations by the gates of the circuit.
Cycles of size 2 are called Transpositions. For example, in the
function corresponding to Figure 5, two transpositions are
available: (1,3) , (4,7). To implement the cycle (4,7), if the binary
combination of input is equivalent to 4, then the circuit gates
must recognize it and convert the binary combination to 7, and
vice versa. The same applies to the cycle (1.3).

In the case of cycles that are larger than 2, the subject is slightly
different. For example, for implementation of the cycle (0, 2, 6),
the gates are placed in such a way that the input combination 0 is
converted to the output combination 2, the combination 2 to 6,
and the combination 6 to 0. We will examine how each kind of
these cycles will be implemented.

e  Cycles with a size of 2:

Assume that the cycle (c1, c2) exists in the description of the
function f. Therefore, the circuit is designed to be converted to a
binary combination equal to c2 if the binary combination of ¢ is
applied to the input, and vice versa. Assuming that this cycle is
the only cycle larger than 1 in function f, other possible
combinations of input must not be changed by the gates in the
circuit. For this purpose, the T,;1, Toffoli gate is located at the
beginning of the circuit to detect the c1 combination at the input.
The control lines of this gate will be connected to the circuit
inputs (xo to xn1) and its target line will be connected to the input
xn with initial value 0. The control lines connected to the inputs
whose corresponding bits in the binary representation of c1 have
a value of 1 are of positive type and others will be negative.

If the input value of the circuit is the binary representation of the
number ci1, then the ancilla line xn will be 1 by this gate,
otherwise the value of the line xn will remain unchanged at 0. In
the following, we must have gates converting c1 to c2. For this
purpose, the values of the lines where the binary representation of
c1 and cz is different in the bits corresponding to those lines
should be changed. Therefore, Feynman gates are used where
their control lines are connected to the ancilla input x» and their
target lines to the corresponding inputs for bits with a value of 1
in c; ® c,. For example, consider the function f with the
following definition:

f(0,1,2,3,4,5,6,7) = (0,1,2,6,4,5,3,7) (7)

The only cycle of this function whose size is greater than 1 is
(3.6). To implement this cycle, a Toffoli gate T2 =
T (xg, x1, X3, x3) is first needed to detect the value of 3 and two
Feynman gates to convert it to 6. According to (8), the target line
of the Feynman gates is connected to the inputs x0 and x2.

c,=3,C,=6

®)
(c,®c,), =101
Therefore, the required Feynman gates are F (x3, x0) and F (x3,
x2). These gates are shown in Figure 6(a). In this circuit, if the
input has a value of 3, line x3 will get a value of 1, so the value of

the bits x0 and x2 will be changed and the output will be
converted to 6. Otherwise, none of the bits will change and the
input value will appear exactly on the output.

In the following, the same trend for converting c2 to c1 should be
repeated. In this sense, a Toffoli gate is needed to detect c2 and
several Feynman gates for converting c2 to c1.

In the case of the function shown in (7), the F (x3, x0) and F (x3,
x2) gates are used to convert the input value 6 to value 3. The full
circuit of function f is shown in Fig. 6 (b).

x0 Ob—  x0
x1 — x1
x2 —  x2
0 x3 (Garbage)

x0 x0
x1 x1
x2 x2
0 x3 (Garbage)

(b)

Fig. 6 - a. Reversible circuit piece to convert value from 3 to 6. b.
The reversible circuit is related to function fin (7)

e  Cycles larger than 2

If the function f has one cycle as C = (c1, Cz, ..., Ck), to implement
it, there must be a set of gates in the circuit that can identify each
input combination from the values c1 to ck and convert it Into the
next combination in the C cycle. Therefore, a Toffoli gate T,.%, is
needed to detect c1 and multiple Feynman gates to convert it to
c2. Similarly, gates are required to convert c2 to c3 and ... and
finally, gates are required to convert ck to c1. Also, other possible
combinations of input values should not be changed by these
gates. For example, consider the function f as f(0,1,2,3,4,5,6,7) =
(0,1,6,2,4,5,3,7). This function has a cycle of size 3 in the form
(2, 6, 3). To implement this function, three sets of gates are
needed to detect the input combination 2 and convert it to 6,
convert 6 to 3, and convert 3 to 2. Figure 7 shows the circuit of
the above function.

x0 — XD
x1 X1
x2 & x2
0 %3 (Garbage)

Fig. 7: The reversible circuit for the function f(0,1,2,3,4,5,6,7) =
(0,1,6,2,4,5,3,7)

e Functions containing several distinct cycles
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If the function f has more than one cycle larger than one, each of
the cycles must be implemented separately. Suppose the function
f has the following cycles:

C=(c1,C2, ...,Ck), (Ck+1, Cke2, ...

+Cp) ©)

You can see the circuit of the function f in Figure 8. This circuit
consists of two parts. The first part is related to the first cycle of

the function f and the second part of the second cycle. But we
must be careful that if the input value of the circuit is one of the
combinations c1 to ck, the value of the ancilla line x» will be 1 at
the output of the first section of circuit, which will cause the gates
in the second section to change the output value. Therefore, at the
end of the first part of the circuit, there should be a Toffoli gate to
zero down the value of line xn.

Feynman gates for convert ¢, to ¢,

>

Xo - ) 2N Xo
7\ 7\ [\ [\ .
HipEElw I
Xn —GA,/ ()\./ & ()\./ ()\ Xn
T, T Ty, T r,

Fig. 8: The reversible circuit for the function containing the cycles C = (c1, 2, ..., Ck), (Ck+1, Ck+2,

To synthesize each function with any number of individual
cycles, there should be a Toffoli gate after the circuit for each
cycle. For example, a function whose truth table is shown in

vy Cp)

Figure 5, has a circuit as Figure 9. Remember that this function
has cycles C = (0,2,6), (1,3), (4,7), (5).

x0 x0
x1 x1
x2 x2
0 Garbage

Fig. 9: The reversible circuit for the function f(0,1,2,3,4,5,6,7) = (2,3,6,1,7,5,0,4)

Improvement in proposed algorithm

In this section, we will examine some of the improvements that
can be made to the proposed algorithms in some cases and
provide better results.

Identifying adjacent transpositions

If a cycle of size 2 in the form (c1, c2) exists in function f so that
the binary representation of c1 and c2 are different in only one
bit, then to implement it, the method presented in (Zhu et al.,

2018) can be used. In this method, a Toffoli gate with n inputs is
used. The gate control lines will connect to the inputs
corresponding to the bits with the same value in c1 and c2, and
the gate target line will connect to input corresponding to the bit
with different values in ¢l and c2. For example, for
implementation of cycle (2,6), instead of using the circuit of
Figure 10.a, we can use the circuit of Figure 10.b.

(1] 0
* > =0 =0
1 1
> * =1 =1
2 2
x * xe xe
0 Garbaqge
(a) (b}

Fig. 10: Circuit related to the cycle (2,6). a. Synthesized with proposed algorithm b. Synthesized with the algorithm presented in (Zhu et
al., 2018)

For another example, the circuit corresponding to the truth table
of Figure 5, with this improvement, is shown in Figure 11. Note
that in this function, the cycle (1,3) can be implemented by the

algorithm presented in (Zhu et al., 2018). The quantum cost of
circuit in figure 9 is 131. While the quantum cost of this circuit
decreases to 95 after the improvement.



55

J Biochem Tech (2018) Special Issue (2): 50-60

=0
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x1

%2

Garbage

Fig. 11: Reversible circuit related to function f(0,1,2,3,4,5,6,7) = (2,3,6,1,7,5,0,4) with improvement

e  Adding an ancilla input per cycle

In the proposed algorithm, as shown, after a circuit for each
cycle, a Toffoli gate with n + 1 input must be placed to return the
input value of xn to 0 again and prevent unwanted change by the
gates of the next section of the circuit. Toffoli gates with high
inputs have high quantum cost. But instead of using them after
the implementation of each cycle, it is possible to use a new
ancilla input for the next cycle. For example, the circuit related to

the function f with cycles C = (0,5), (1,3,7), (2,4) which is
generated by the proposed algorithm, is shown in Fig. 12.a. This
function consists of three cycles. So, as seen, between the circuits
of these three cycles, there are two 4-input Toffoli gates. The
quantum cost of this circuit is 133. Now adding the two ancilla
inputs to this circuit can eliminate the above gates and reduce the
quantum cost of the circuit. The circuit obtained in this way is
shown in Figure 12.b. The quantum cost of the improved circuit
is reduced to 105.

x0 x0
x1 x1
x2 x2
0 Garbage
(a)

%0 S ) %0

%1 E 4l I 4l %1

®2 a a I a x2

0 Garbage
0 & 0@ Garbage
0 49 @@ @ Garbage

(b)

Fig. 12: The circuit related to the function f with cycles C = (0,5), (1,3,7), (2,4). a. With one ancilla input. b. With several ancilla inputs

e  Considering don’t care combinations and
outputs

For some reasons, including adding ancilla inputs, some of the
input combinations of the function may be considered don’t care.
In such cases, the values that are considered as output of care
combinations can be excluded and it is possible to assign other
values in some way to the output of don’t care combinations in
which the minimum number of cycles is created. To do this, we
must try to consider the output value of any don’t care
combination, if possible, equal to the input value of the same
combination. Thus, since cycles of size 1 are generated, this
algorithm does not consider any gate to implement the function.

Also, if we have garbage outputs that have the don’t care value in
all combinations, in the initialization of these outputs, it can be
operated in such a way that, if possible, the input and output
values are identical in different combinations.

For example, the truth table in Figure 13 relates to a reversible
Full Adder circuit with one ancilla input and two garbage outputs.
As you know, due to the fact that the output of the 3

combinations in this table is the same, in order to make this
circuit reversible, two garbage outputs have to be added to it, so
one ancilla input will also be added to the circuit.

Inputs
ancilla a

Qutputs
82 Couw
X 0

[]
=

o

PRRPRRRRPRLPOO0O0O0O0OCO
PR P OO0OOCORRRERR,OOOCO
POORRPROORREROORRPOO|T
OCRORORORORORORO0
X X X X X X X B R R OR o0

XX X oM M X X X X X X X X X

X X X X XXX PPOORORRPO|n

MoX X X X X X X X X X X X X X X

[uy
[
-
[

X

Fig. 13: The truth table of reversible Full Adder with don’t care
combinations and outputs

x
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To synthesize this circuit, uncertain situations must be identified
in the truth table. For example, the value of outputs in
combinations 0, 1, 6 and 7 is set to a value equal to the same
input values in the output of these combinations, respectively. We
set the output of other don’t care combinations with the goal of
minimizing the number of cycles. The generated truth table and
the circuit for it by the algorithm presented in [8] and also the

proposed algorithm are shown in Figure 14. In this truth table, the
desired function consists of a cycle C = (2,5,10,4,9,3). As can be
seen, the quantum cost of the synthesized circuit by the algorithm
presented in [8] is 273. While the quantum cost of the circuit
generated by the proposed algorithm is 190.

Inputs
ancilla a b
0 0 0
0 0 0
0 0 1
0 0 1
0 1 0
0 1 0
0 1 1
0 1 1
1 0 0
1 0 0
1 0 1
1 0 1
1 1 0
1 1 ]
1 1 1
1 1 1

P ORORORFRORLRORORORON

Qutputs
gl g2 Couw S
0 0 ] 0
0 0 0 1
0 1 0 1
0 0 1 0
1 0 ] 1
1 0 1 0
0 1 1 0
0 1 1 1
1 0 0 0
0 0 1 1
0 1 ] 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

x0 x0
x1 x1
x2 x2
x3 x3
(b)

c b— S

b ?L Cout

a g2
ancilla=0 — gl

0 Garbage

©

Fig. 14: a. The truth table of reversible Full Adder without any don’t care. b. Synthesized circuit by the algorithm presented in (Zhu et
al., 2018). c. Synthesized circuit by proposed algorith

Practical Results

In this section we will compare the results of the proposed
algorithm implementation with the previous work. Note that the
algorithm of this paper has a very good performance compared to
other algorithms in cases where the number of cycles of the
function is small compared to the number of inputs. The reason
for this is that our method adds the gate to the circuit only for
combinations in the truth table, which does not have the same
input value as the output and these gates will not affect other
combinations. But in the previous methods, the gate that is added
to the circuit for one combination in the truth table can also
change other combinations and, for functions with limited
number of cycles, large and expensive circuits may be produced.

First, we examine a number of functions as examples and
compare the results of each of the algorithms presented in (Miller,
Maslov & Dueck, 2003; Zhu et al., 2018), as well as the proposed
algorithm of this paper. Then we will compare the results of the
implementation of these algorithms on different functions with
the different number of inputs, as well as the different number
and size of cycles in a table.

First, consider the following function with the four inputs below:

£(0,1,2,3,...,15) = (0,2,1,3,...,15) (10)

As can be seen, this function only contains a cycle C = (1,2). In
fact, in only two possible input combinations, its output value
varies with the input value. Figure 15(a) shows the synthesis of
this function by the Transformation-based algorithm presented in
(Miller, Maslov & Dueck, 2003). Figure 15.b shows the result of
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the algorithm presented in (Zhu et al., 2018) on this function. And
also in Figure 15.c, the circuit obtained from the algorithm of this
paper, along with the quantum cost of each, is seen. As it is

known, the previous algorithms produced a fairly large circuit for
a simple function that varies in the input and output values in
only two cases. This defect has been resolved in our algorithm.

x0 Ty T T DT Ty T Ty =0
x1 x1
xZ xZ
x3 x3
(a}
0 w0 =<0 al (] =0
1 1 x1 Al E Al x1
«2 %2 =2 =2
3 %3 =3 i =3
1} Garbage
(b)

(c)

Fig. 15: Synthesis of a 4-input function with a cycle C = (1,2) a. By the method presented in (Miller, Maslov & Dueck, 2003) with
quantum cost 72. b. By the method presented in (Zhu et al., 2018) with quantum cost 39. c. By proposed algorithm with quantum cost 62.

As the size and dimensions of the function become larger, the
difference between the results of this algorithm and the previous
works is revealed. As another example, we synthesize the 5-input

function containing the cycle C = (1,2,5) by the above algorithms,
the results of which are shown in Figure 16.

x0 x0
x1 x1
x2 x2
x3 x3
x4 x4
x0
x1
x2
x3
x4
(a)
x0 x0
x0 x0
x1 x1
x1 x1 5 5
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x2 x2 i
3 3 x3 x3
X X,
x4 i x4
x4 x4
0 Garbage

(€]

Fig. 16: Synthesis of the input function 5 with a cycle C = (1,2,5) a. By the method presented in (Miller, Maslov & Dueck, 2003) with a
quantum cost of 406. b. By the method presented in (Zhu et al., 2018) with a quantum cost of 232. c. The proposed algorithm with a
quantum cost of 189.

In Table 1, the generated circuits are compared in terms of
quantum cost for different functions, based on the dimensions of
the circuit as well as the number of cycles and the size of the
cycles in the description of the function. Generated circuits are
simulated and analyzed by RC viewer tool. In this table, different
functions are considered with different input numbers. These
functions have a different number and size of the cycles. The
results of the synthesis of these functions by the algorithm
presented in (Miller, Maslov & Dueck, 2003), which is one of the

basic algorithms for the synthesis of any type of function, the
algorithm presented in (Zakablukov, 2016), which is based on the
most recent cycle-based algorithms, as well as the proposed
algorithm is presented in the table. The first to third column
shows the number of inputs of the requested function, the number
of cycles in the description of the function, and the size of these
cycles. The next three columns represent the number of ancilla
inputs that have generated the by algorithm in the synthesis of the
circuit. The last three columns represent the quantum cost of the
circuit generated by these three algorithms. If you look at the
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values in the table, you will see that whatever the requested function is lower, the proposed algorithm yields a better result
function is larger and the number and size of the cycles in the than the other two algorithms.

Table 1 - Results of Synthesis Algorithms on Different Functions

Number of | size of | Number _ Number of Ancilla Inputs _ Quantum Cost
# Inputs | Cycles |of Cycles (Miller, Maslov & |(Zhu et al., Propo_sed (Miller, Maslov & | (Zhu et al., Propo_sed
Dueck, 2003) 2018) Algorithm Dueck, 2003) 2018) Algorithm
1 2 2 1 0 0 1 3 3 14
2 3 2 1 0 0 1 18 15 30
3 3 3 1 0 0 1 25 40 45
4 3 5 2 0 0 1 21 45 50
5 4 2 1 0 0 1 72 39 62
6 4 3 1 0 0 1 112 104 93
7 4 4 1 0 0 1 78 91 124
8 4 5 1 0 0 1 74 104 155
9 4 5 2 0 0 1 90 117 106
10 5 2 1 0 0 1 252 87 126
11 5 3 1 0 0 1 406 232 189
12 5 4 1 0 0 1 250 203 252
13 5 5 1 0 0 1 267 232 315
14 5 5 2 0 0 1 324 261 218
15 5 6 2 0 0 2 230 232 324
16 5 6 2 0 0 1 320 234 283
17 6 2 1 0 0 1 828 183 254
18 6 3 1 0 0 1 1354 488 381
19 6 4 1 0 0 1 834 427 508
20 6 5 1 0 0 1 811 488 635
21 6 5 2 0 0 1 1080 549 433
22 6 6 2 0 0 2 796 2318 500
23 6 7 1 0 0 1 1206 2196 897
24 6 7 2 0 0 2 921 2135 584
25 6 7 3 0 0 2 1080 1708 456
26 6 8 1 0 0 1 1251 2501 1024
27 6 8 2 0 0 2 1339 2318 666
28 6 8 3 0 0 3 967 2135 666
Table 2- Normalized results for comparison of cost and 6 5/333333 7 6/5 5/8125
performance criteria 22 | 5/333333 | 12/4375 | 36/21875 | 7/8125
" Qost_ (Miller, Maslov | (Zhu et al., Propqsed 13 o4 8134375 175 o/84375
Criteria |& Dueck, 2003)| 2018) |Algorithm
4 0/8 2/625 5/625 6/25 21 6/4 16/875 8/578125 | 6/765625
9 1/6 5/625 7/3125 6/625 5 8 4/5 2/4375 3/875
1 2 0/75 0/75 3/5
3 27666667 3/125 5 51625 12 8 7/8125 6/34375 7/875
15 | 2/666667 |  7/1875 7125 | 10125 26 8 19/54688 | 39/07813 | 16
16 | 2/666667 0 13125 | 8/34375 23 | 9/142857 | 18/84375 | 34/3125 |14/01563
28 | 2/666667 | 15/10938 | 33/35938 |10/40625 11 | 10/66667 | 12/6875 7/25 | 5/90625
25 | 3/047619 16/875 26/6875 | 7/125 20 12/8 12/67188 7/625 | 91921875
8 3/2 4/625 6/5 9/6875 10 16 7/875 2/71875 3/9375
14 3/2 10/125 8/15625 6/8125 19 16 13/03125 6/671875 | 7/9375
> 2 2125 1875 3775 18 | 21/33333 | 21/15625 7/625 | 5/953125
4 4/875 5/6875 7175 17 32 12/9375 2/859375 | 3/96875
27 4 20/92188 36/21875 | 10/40625 IAverage 7/3748 10/50725 12/87723 | 7/702009
24 4/571429 14/39063 33/35938 9/125
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To better analyze the results, we define the criterion for
evaluating the complexity of the requested function as follows:

Znumbe‘r of input

Complexity Criterion = — (11)
number of cycles*cycle size

Also, because the quantum cost is dependent on the magnitude of
the circuit, to quantify the cost of different circuits, we obtain the
standardized normalized cost with the following definition:

Quantum cost
pnumber of input

Cost Criterion = (12)
The results in Table 1 are normalized in Table 2. For a more
straightforward comparison, we arrange the table based on the
complexity criterion. As you can see, the larger the number of
inputs in the circuit and the smaller the cycles and the size of the
reversible function cycles are required, the quantum cost of the
circuit generated by the proposed algorithm will be less than the
previous algorithms. As explained earlier, this is because earlier
algorithms usually check the truth table from top to bottom and
they try to make each combination of the truth table and this will
change the next lines. But the proposed method only affects the
current combination, without changing other combinations.

At the end of Table 2, we get the average value of each column.
As can be seen, the proposed method has improved in the cost
criterion, on average, between 27% and 40% in circuits where the
use of this algorithm is justified.

Conclusion

One of the challenges in the field of modern integrated circuit
technologies, such as quantum, optical, etc., is the synthesis of
reversible circuits. A lot of work has been done in this field.
Many of the works done on the synthesis of reversible circuits has
focused on the cycles in their function. These tasks generally find
the cycles in the truth table and try to implement them, using
existing reversible gates. In these methods, when a combination
of the truth table is considered and a gate is added to the circuit
for its implementation, this gate usually changes the other
combinations of the table. In cases where the original truth table
has small cycles, these methods cause many gates to be used to
implement such a function.

The proposed method, by relying on the cycles in the truth table,
produces a circuit in such a way that these cycles are
implemented without any change in the other combinations of the
truth table. Therefore, for functions with low-size cycles, it will
generate much less expensive circuits than other methods. The
cycles to which they are considered can be of the size of 2 or
more than 2. In the end, we have made improvements that reduce
the cost of the circuit generated or extend the application of this
algorithm. In the case of cycles of size 2 that are between
adjacent states, we can use less costly gates. Also, for functions
whose descriptions have don’t care combinations or outputs, a
method is proposed that reduces the number of cycles and their
size and, consequently, reduces the cost of the generated quantum
circuit.

We compare the results with the other works presented in (Miller,
Maslov & Dueck, 2003; Zhu et al., 2018). In (Miller, Maslov &
Dueck, 2003), the basic method for the synthesis of reversible
circuits was proposed in 2003, and (Zhu et al., 2018) a method
based on the cycles in the truth table is presented in 2018. The
results of the comparison show that in cases where a large
function with a small number and size of cycles is present, the
previous methods will generate a costly circuit for it. But the
proposed method works much better in these cases. Considering
the criteria for evaluation and comparison, for the above
functions, the proposed algorithm improved the cost of generated
reversible circuit between 27% and 40%.
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