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Abstract

Acinetobacter baumanniiis a gram-negative member of the
ESKAPE group of pathogens and is recognized for causing severe
hospital-acquired infections that are increasingly difficult to treat.
Its carbapenem resistance is primarily driven by the production of
B-lactamase enzymes, particularly the metallo-p-lactamase IMP-1
and the class D OXA-24 enzyme, which hydrolyze carbapenem
antibiotics, rendering them ineffective. In this study,
phytochemicals from ten Philippine-approved medicinal plants
were explored as potential inhibitors of these key resistance
enzymes. A total of 1,532 compounds were initially screened in
ADMETIab 3.0, and twenty-three molecules met both the QED
(quantitative estimate of drug-likeness) and ADMET (absorption,
distribution, metabolism, excretion, toxicity) criteria. These
selected compounds were then subjected to molecular docking
using AutoDock 4, and several exhibited stronger binding affinities
than the control drug. Among these, Kuguacin P, Negundol 1b,
Negundoin E, Negundoin A, and Balsamiferine D emerged as the
most promising candidates for further development of novel B-
lactamase inhibitors.

Keywords: Multidrug resistance, Acinetobacter baumannii, f3-
lactamases, Phytochemicals

Introduction

Acinetobacter baumannii is a gram-negative opportunistic
pathogen and one of the ESKAPE (Enterococcus faecium,
Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter
baumannii, Pseudomonas aeruginosa, and Enterobacter cloaca)
organisms responsible for severe nosocomial infections, including
ventilator-associated pneumonia (Pendleton et al., 2013; Lee et al.,
2023). The World Health Organization designates A. baumannii a
critical-priority pathogen due to its rapid acquisition of multidrug
resistance (WHO, 2017; WHO, 2023). Central to this resistance is
the production of carbapenemase enzymes, particularly metallo-f3-
lactamases (MBLs) and OXA-type class D B-lactamases, which
are not inhibited by existing pB-lactamase inhibitors, leaving few
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effective treatment options (Evans & Amyes, 2014; Bush &
Bradford, 2016).

Among these enzymes, the IMP-type MBLs are encoded by
the blaIMP gene and disseminated across gram-negative bacteria
via integrons, enabling widespread resistance (Pongchaikul &
Mongkolsuk, 2022). IMP enzymes hydrolyze B-lactams through
zinc-dependent catalysis at their active site (Bebrone, 2007).
Variants such as IMP-1, first reported
aeruginosa (Watanabe et al., 1991), and subsequent forms display

in Pseudomonas

structural loop differences that influence substrate binding and
catalytic efficiency (Walsh et al., 2005). Their broad distribution
across A. baumannii, K. pneumoniae, and other pathogens
underscores their clinical significance.

Similarly, OXA-24 -lactamase, also known as OXA-40,
represents a plasmid-encoded carbapenemase initially confined
to A. baumannii but now found in other species (Bou & Martinez-
Beltran, 2000). Its active site is characterized by a hydrophobic
barrier formed by Tyr112 and Met223, creating a tunnel-like entry
for substrates (Santillana et al., 2007). A conserved STFK tetrad
within the active site mediates nucleophilic attack on B-lactams,
facilitating carbapenem hydrolysis (Rice et al., 2012). The
structural adaptability of OXA enzymes has contributed to their
success in conferring high-level resistance (Poirel et al., 2010;
Mubayrik et al., 2022).

In the Philippines, 4. baumannii isolates frequently carry IMP and
OXA-24-like genes, with carbapenem resistance rates exceeding
50% (Chilam et al., 2021). To address this, plant-derived natural
products offer a promising alternative. The ten Department of
Health (DOH)-approved medicinal plants (Vitex negundo, Blumea
balsamifera L., Momordica charantia L., Allium sativum L.,
Psidium guajava, Carmona retusa, Mentha cordifolia, Quisqualis
indica, Senna alata, and Peperomia pellucida, known for
antimicrobial activity, provide a rational starting point (Dantes et
al., 2021; PITAHC, nd). Here, in silico ADMET screening and
molecular docking were employed to identify phytochemicals with
inhibitory potential against IMP-1 and OXA-24, aiming to
highlight novel candidates for combating multidrug-resistant 4.
baumannii.

Materials and Methods

The workflow of this study was adapted from Ahmed et al. (2023)
and Etminani et al. (2023), with modifications suited to the
available protein structures and software tools. The procedure was
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organized into five stages: (1) preparation of phytochemical
ligands, (2) protein collection and refinement, (3) QED and
ADMET screening, and (4) molecular docking.

Preparation of Phytochemical Ligands

Phytochemicals from the ten DOH-PITAHC medicinal plants
(PITAHC, nd) were used as candidate ligands, yielding 1,532
compounds (Castro & Billones, 2024). Ligand SMILES and SDF
files were obtained from PubChem; for unavailable compounds,
structures were drawn using the RCSB PDB Chemical Sketch
Tool. Structures were converted via OpenBabel v3.1.1 and
geometry-optimized in Avogadro v1.2.0 using the MMFF94 force
field (Steepest Gradient, convergence 1077, 1000 steps). Optimized
ligands were saved in Mol2 format.

Protein Collection and Refinement

The OXA-24 B-lactamase (PDB ID: 3G4P) was retrieved from
RCSB PDB, while IMP-1 was modeled in SWISS-MODEL using
UniProt Q6ZXZ6. Both structures were refined in ChimeraX v1.9
to remove water and heteroatoms, then processed in AutoDock
Tools v1.5.7 by adding polar hydrogens, Kollman charges, and
AD4 atom types. Final files were saved in PDBQT format.

QED and ADMET Screening

Ligands were screened in ADMETIab 3.0 for drug-likeness (QED
> 0.49) and pharmacokinetic parameters (absorption, distribution,
metabolism, excretion, toxicity). Criteria included HIA, oral
bioavailability, BBB penetration, hERG blockade, AMES toxicity,
and hepatotoxicity. Only compounds meeting both QED and
ADMET thresholds advanced to docking.

Molecular Docking

Docking was performed using AutoDock4 v4.2.6. Blind docking
with sulbactam validated active sites in both targets (IMP-1: grid
100 x 100 x 100 A, spacing 0.6 A, center -11.002, 0.233, -20.063;
OXA-24: grid 120 x 120 x 120 A, spacing 0.6 A, center 95.339,
27.065, 34.96). Subsequent site-directed docking was conducted
for 23 screened ligands plus sulbactam as a control. Grid boxes
encompassed the active sites (IMP-1: 70 x 70 x 70 A, center -
21.815,-1.523, -23.397; OXA-24: 70 x 70 x 70 A, center 104.249,
27.118, 27.163). The Lamarckian genetic algorithm (10 runs,
medium evaluation setting) was applied, and the lowest binding
energy conformations were visualized in AutoDock Tools and
BIOVIA Discovery Studio v25.1.0.24284.

Results and Discussion
QED and ADMET Screening of Phytochemical Ligands

The present study commenced with an extensive in silico screening
of 1,532 phytochemicals derived from Philippine-approved
medicinal plants, serving as the initial ligand pool (PITAHC, n.d.).
These natural products, traditionally employed for a wide range of
ailments, are an underexplored source of potential anti-bacterial
compounds. Their structural diversity, spanning alkaloids,
flavonoids, terpenoids, coumarins, and phenolic compounds,
provided a robust foundation for identifying inhibitors against two

clinically important B-lactamases in Acinetobacter baumannii:
the IMP-1 metallo-B-lactamase (class B) and OXA-24 B-lactamase
(class D).

Drug-likeness was assessed using the QED index, with a cutoff
of > 0.50, consistent with established thresholds for drug-like
molecules (Bickerton et al., 2012). Many rejected ligands were
excluded because they failed basic physicochemical constraints,
such as excessive molecular weight, poor solubility, or unfavorable
polarity. The QED-passing compounds underwent further
evaluation for Absorption, Distribution, Metabolism, Excretion,
and Toxicity (ADMET) properties using ADMETIlab 3.0.
Parameters included human intestinal absorption (HIA), oral
bioavailability, plasma protein binding (PPB), blood-brain barrier
penetration, and cardiotoxicity (hERG inhibition). In addition,
hepatotoxicity and genotoxicity were considered, as these remain
common liabilities in drug development.

Twenty-three (23) compounds passed the full panel of ADMET
and QED criteria. These included flavonoid derivatives (e.g.,
negundoin analogues), terpenoid lactones (e.g., kuguacin P), and
alkaloid scaffolds (e.g., balsamiferine D). Importantly, these 23
compounds displayed favorable oral bioavailability and low
predicted toxicity (Table 1), supporting their candidacy for
downstream docking studies.

Table 1. Quantitative Estimate of Druglikeness (QED) and
Predicted ADMET Profiles of Top Hits

Compound

HIA (%)
BBB
Penetration
Oral
Bioavailability
hERG Risk
Hepatotoxicity
QED

Kuguacin P High Low  Moderate None None 0.62
Negundol 1b  High Negligible High

Negundoin A High Low High

Mod
Negundoin E ode Low High Low
rate

None None 0.69
None Low 0.53

None 0.70

Balsamiferine D High Low  Moderate None None 0.61

Validation of Docking Protocol

To ensure the reliability of docking simulations, blind docking was
performed using the control drug sulbactam—a known f-
inhibitor ~ (Penwell,  2015). The  docking
reproduced experimentally reported active sites in both IMP-1 and
OXA-24 (Figure 1), confirming the robustness of the grid box
parameters and search algorithm (Lamarckian Genetic Algorithm,
AutoDock4). For IMP-1, sulbactam docked within the zinc-
coordinated catalytic groove, interacting with key residues
(His116, His118, His196, Asp120) that stabilize the two zinc ions
essential for hydrolysis (Pongchaikul & Mongkolsuk, 2022).
For OXA-24, sulbactam localized within the STFK tetrad-centered
active site, forming hydrogen bonds with Ser81 and stacking
interactions with Tyr112 and Met223 side chains, consistent with
crystallographic data (Santillana et al., 2007).
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Figure 1. Docking pose of sulbactam from blind docking with
a) IMP-1 metallo-B-lactamase and b) OXA-24 B-lactamase,
showing alignment within the predefined grid box
corresponding to literature-identified active sites.

Molecular Docking of Phytochemicals

The 23 screened ligands were docked into the validated binding
pockets of IMP-1 and OXA-24. Average binding energies reached
as high (i.e., most negative) as —10.9 kcal/mol, with several ligands
outperforming sulbactam (—6.7 kcal/mol). The top hits (Figure 2)
included Kuguacin P, Negundol 1b, Negundoin A, Negundoin E,
and Balsamiferine D, listed in decreasing order of average binding
energy against the two targets (Table 2).

Kuguacin P

Negundol 1b

Negundoin A

L e)
Ll “m\\ OH

Negundoin E

. I.‘\\\O “‘\

HO *
Balsamiferine D

Figure 2. Chemical structures of the top five hits from
molecular docking studies.

Table 2. Molecular Docking Results of Top Five Compounds vs.
Control Drug

g2 - £ = 2
S5 393 wis
7] ) 80 A
Compound Plant Source 20 % E = % g § 20 %
x| | 2 £
228 T2 2%z
S~z 2 T g S
[=] a [=]
M di
Kuguacin P omordiea 114 103 109
charantia
Negundol 1b  Vitex negundo -7.0 -8.0 -1.5

Negundoin A  Vitex negundo -7.2 -7.6 -7.4
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Negundoin E  Vitex negundo -7.0 =77 -7.4
Balsamiferine Blumea
D balsamifera 17 69 73
Sulbactam* synthetic -7.2 6.1 -6.7
* Control

In silico analysis of several IMP-type metallo-B-lactamases
(MBLs) revealed that the conserved sequence in the active site
consists of His95, Phe96, His97, Asp99, Ser100, His157, Cys176,
and His215. These enzymes contain two zinc (II) ions bound to the
active site (Palacios et al., 2020; Chidambaranathan & Culathur,
2022; Pongchaikul et al., 2022; Macri et al., 2023; Fiodorova,
2024), which were included in the binding site set for molecular
docking analysis with IMP-1. The docking results showed that the
active site residues interacted with the top 5 docked ligands, which
were identified based on binding energies. Notably, His157 and
His215 were consistently involved in interactions across all top
hits. Although their direct role in IMP-1 resistance remains
unclear, both are coordinated with one of the zinc atoms in the
active site (Shakibaie ef al., 2017; Chidambaranathan & Culathur,
2022; Pavithra et al., 2023).

Other active site residues, including His95, Phe96, His97, and
Asp99, also demonstrated interactions with the ligands. Some
ligands exhibited a higher number of interacting residues
compared to the control drug, suggesting stronger binding affinity
and a potentially greater inhibitory effect against IMP-1. These
findings underscore the importance of further investigation into the
functional significance of conserved residues and their role in
ligand binding and enzyme inhibition.

The binding site for molecular docking with OXA-24 was defined
to include the STFK tetrad and the tunnel-like entrance formed by
Tyr112 and Met223. The conserved Ser residue within the STFK
tetrad is crucial for catalytic activity, and ligand interaction with
this residue may indicate probable inhibition of OXA-24 (Palacios
et al., 2020). Docking results showed that all top 5 phytochemical
ligands interacted with Ser81, while also engaging Tyr112 and
Met223, which help orient inhibitors toward the active center.
Previous in silico studies demonstrated that occupying this tunnel-
like entrance, as in the case of QPX7728, contributes to vigorous
inhibitory activity (Lence et al., 2021). Additionally, multiple
residues interacted with the ligands, suggesting stronger binding
affinity and inhibitory potential compared to the control drug.

Kuguacin P, a cucurbitane triterpenoid, ranked first for both IMP-
1 and OXA-24 and has been reported to show weak anti-HIV-1
activity in vitro (Chen et al., 2009; Pavithra et al., 2023).
Negundoin A, negundoin E, and negundol 1b are derived
from Vitex negundo(lagundi), a plant with documented
antimicrobial activity, including bactericidal effects of its ethyl
acetate leaf extract against multidrug-resistant Klebsiella
pneumoniae (Palaninathan et al., 2022). Meanwhile, balsamiferine
D is a sesquiterpene derived from Blumea balsamifera (sambong),
a plant renowned for its anti-bacterial properties against both
Gram-positive and Gram-negative pathogens (Ismail et al., 2022).
Balsamiferine compounds have also been shown to inhibit LPS-
induced nitric oxide production in microglial BV-2 cells (Xu et al.,

2012). These findings support the potential of the identified

phytochemicals as lead compounds for the development of further
inhibitors.

The discovery that natural phytochemicals can inhibit both class B
(IMP-1) and class D (OXA-24) B-lactamases holds strong clinical
promise against carbapenem-resistant 4. baumannii. Compounds
such as Kuguacin P exhibit favorable ADMET properties—high
intestinal absorption, low plasma protein binding, and non-
hepatotoxic predictions—supporting their potential as druggable
adjuvant inhibitors, akin to clavulanic acid in combination with
amoxicillin. Unlike conventional synthetic scaffolds, these
phytochemicals derive from traditional medicinal plants, offering
ethnopharmacological validation and a novel chemical space. This
study is the first to highlight Kuguacin P, negundoin derivatives,
and Balsamiferine D as dual inhibitors of IMP-1 and OXA-24,
expanding the landscape of plant-derived B-lactamase inhibitors
beyond prior flavonoid-based reports.

Conclusion

This study systematically identified and evaluated phytochemicals
from the Philippines’ /0 Halamang Gamot (Medicinal Plants) as
potential inhibitors of two critical B-lactamases in 4. baumannii.
Through QED and ADMET filtering, molecular docking, and
interaction analyses, five phytochemicals emerged as promising
candidates, with Kuguacin P consistently demonstrating the
strongest dual inhibitory potential against IMP-1 and OXA-24.
These findings underscore the untapped potential of Philippine
medicinal plants in antimicrobial drug discovery, offering a
compelling rationale for experimental validation and further
optimization.
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