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Abstract 

Acinetobacter baumannii is a gram-negative member of the 

ESKAPE group of pathogens and is recognized for causing severe 

hospital-acquired infections that are increasingly difficult to treat. 

Its carbapenem resistance is primarily driven by the production of 

β-lactamase enzymes, particularly the metallo-β-lactamase IMP-1 

and the class D OXA-24 enzyme, which hydrolyze carbapenem 

antibiotics, rendering them ineffective. In this study, 

phytochemicals from ten Philippine-approved medicinal plants 

were explored as potential inhibitors of these key resistance 

enzymes. A total of 1,532 compounds were initially screened in 

ADMETlab 3.0, and twenty-three molecules met both the QED 

(quantitative estimate of drug-likeness) and ADMET (absorption, 

distribution, metabolism, excretion, toxicity) criteria. These 

selected compounds were then subjected to molecular docking 

using AutoDock 4, and several exhibited stronger binding affinities 

than the control drug. Among these, Kuguacin P, Negundol 1b, 

Negundoin E, Negundoin A, and Balsamiferine D emerged as the 

most promising candidates for further development of novel β-

lactamase inhibitors. 

 

Keywords: Multidrug resistance, Acinetobacter baumannii, β-
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Introduction  

Acinetobacter baumannii is a gram-negative opportunistic 

pathogen and one of the ESKAPE (Enterococcus faecium, 

Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter 

baumannii, Pseudomonas aeruginosa, and Enterobacter cloaca) 

organisms responsible for severe nosocomial infections, including 

ventilator-associated pneumonia (Pendleton et al., 2013; Lee et al., 

2023). The World Health Organization designates A. baumannii a 

critical-priority pathogen due to its rapid acquisition of multidrug 

resistance (WHO, 2017; WHO, 2023). Central to this resistance is 

the production of carbapenemase enzymes, particularly metallo-β-

lactamases (MBLs) and OXA-type class D β-lactamases, which 

are not inhibited by existing β-lactamase inhibitors, leaving few 

effective treatment options (Evans & Amyes, 2014; Bush & 

Bradford, 2016). 

Among these enzymes, the IMP-type MBLs are encoded by 

the blaIMP gene and disseminated across gram-negative bacteria 

via integrons, enabling widespread resistance (Pongchaikul & 

Mongkolsuk, 2022). IMP enzymes hydrolyze β-lactams through 

zinc-dependent catalysis at their active site (Bebrone, 2007). 

Variants such as IMP-1, first reported in Pseudomonas 

aeruginosa (Watanabe et al., 1991), and subsequent forms display 

structural loop differences that influence substrate binding and 

catalytic efficiency (Walsh et al., 2005). Their broad distribution 

across A. baumannii, K. pneumoniae, and other pathogens 

underscores their clinical significance. 

Similarly, OXA-24 β-lactamase, also known as OXA-40, 

represents a plasmid-encoded carbapenemase initially confined 

to A. baumannii but now found in other species (Bou & Martínez-

Beltrán, 2000). Its active site is characterized by a hydrophobic 

barrier formed by Tyr112 and Met223, creating a tunnel-like entry 

for substrates (Santillana et al., 2007). A conserved STFK tetrad 

within the active site mediates nucleophilic attack on β-lactams, 

facilitating carbapenem hydrolysis (Rice et al., 2012). The 

structural adaptability of OXA enzymes has contributed to their 

success in conferring high-level resistance (Poirel et al., 2010; 

Mubayrik et al., 2022). 

In the Philippines, A. baumannii isolates frequently carry IMP and 

OXA-24-like genes, with carbapenem resistance rates exceeding 

50% (Chilam et al., 2021). To address this, plant-derived natural 

products offer a promising alternative. The ten Department of 

Health (DOH)-approved medicinal plants (Vitex negundo, Blumea 

balsamifera L., Momordica charantia L., Allium sativum L., 

Psidium guajava, Carmona retusa, Mentha cordifolia, Quisqualis 

indica, Senna alata, and Peperomia pellucida, known for 

antimicrobial activity, provide a rational starting point (Dantes et 

al., 2021; PITAHC, nd). Here, in silico ADMET screening and 

molecular docking were employed to identify phytochemicals with 

inhibitory potential against IMP-1 and OXA-24, aiming to 

highlight novel candidates for combating multidrug-resistant A. 

baumannii. 

Materials and Methods 

The workflow of this study was adapted from Ahmed et al. (2023) 

and Etminani et al. (2023), with modifications suited to the 

available protein structures and software tools. The procedure was 
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organized into five stages: (1) preparation of phytochemical 

ligands, (2) protein collection and refinement, (3) QED and 

ADMET screening, and (4) molecular docking. 

Preparation of Phytochemical Ligands 

Phytochemicals from the ten DOH-PITAHC medicinal plants 

(PITAHC, nd) were used as candidate ligands, yielding 1,532 

compounds (Castro & Billones, 2024). Ligand SMILES and SDF 

files were obtained from PubChem; for unavailable compounds, 

structures were drawn using the RCSB PDB Chemical Sketch 

Tool. Structures were converted via OpenBabel v3.1.1 and 

geometry-optimized in Avogadro v1.2.0 using the MMFF94 force 

field (Steepest Gradient, convergence 10⁻⁷, 1000 steps). Optimized 

ligands were saved in Mol2 format. 

Protein Collection and Refinement 

The OXA-24 β-lactamase (PDB ID: 3G4P) was retrieved from 

RCSB PDB, while IMP-1 was modeled in SWISS-MODEL using 

UniProt Q6ZXZ6. Both structures were refined in ChimeraX v1.9 

to remove water and heteroatoms, then processed in AutoDock 

Tools v1.5.7 by adding polar hydrogens, Kollman charges, and 

AD4 atom types. Final files were saved in PDBQT format. 

QED and ADMET Screening 

Ligands were screened in ADMETlab 3.0 for drug-likeness (QED 

≥ 0.49) and pharmacokinetic parameters (absorption, distribution, 

metabolism, excretion, toxicity). Criteria included HIA, oral 

bioavailability, BBB penetration, hERG blockade, AMES toxicity, 

and hepatotoxicity. Only compounds meeting both QED and 

ADMET thresholds advanced to docking. 

Molecular Docking 

Docking was performed using AutoDock4 v4.2.6. Blind docking 

with sulbactam validated active sites in both targets (IMP-1: grid 

100 × 100 × 100 Å, spacing 0.6 Å, center -11.002, 0.233, -20.063; 

OXA-24: grid 120 × 120 × 120 Å, spacing 0.6 Å, center 95.339, 

27.065, 34.96). Subsequent site-directed docking was conducted 

for 23 screened ligands plus sulbactam as a control. Grid boxes 

encompassed the active sites (IMP-1: 70 × 70 × 70 Å, center -

21.815, -1.523, -23.397; OXA-24: 70 × 70 × 70 Å, center 104.249, 

27.118, 27.163). The Lamarckian genetic algorithm (10 runs, 

medium evaluation setting) was applied, and the lowest binding 

energy conformations were visualized in AutoDock Tools and 

BIOVIA Discovery Studio v25.1.0.24284. 

Results and Discussion 

QED and ADMET Screening of Phytochemical Ligands 

The present study commenced with an extensive in silico screening 

of 1,532 phytochemicals derived from Philippine-approved 

medicinal plants, serving as the initial ligand pool (PITAHC, n.d.). 

These natural products, traditionally employed for a wide range of 

ailments, are an underexplored source of potential anti-bacterial 

compounds. Their structural diversity, spanning alkaloids, 

flavonoids, terpenoids, coumarins, and phenolic compounds, 

provided a robust foundation for identifying inhibitors against two 

clinically important β-lactamases in Acinetobacter baumannii: 

the IMP-1 metallo-β-lactamase (class B) and OXA-24 β-lactamase 

(class D). 

Drug-likeness was assessed using the QED index, with a cutoff 

of ≥ 0.50, consistent with established thresholds for drug-like 

molecules (Bickerton et al., 2012). Many rejected ligands were 

excluded because they failed basic physicochemical constraints, 

such as excessive molecular weight, poor solubility, or unfavorable 

polarity. The QED-passing compounds underwent further 

evaluation for Absorption, Distribution, Metabolism, Excretion, 

and Toxicity (ADMET) properties using ADMETlab 3.0. 

Parameters included human intestinal absorption (HIA), oral 

bioavailability, plasma protein binding (PPB), blood–brain barrier 

penetration, and cardiotoxicity (hERG inhibition). In addition, 

hepatotoxicity and genotoxicity were considered, as these remain 

common liabilities in drug development. 

Twenty-three (23) compounds passed the full panel of ADMET 

and QED criteria. These included flavonoid derivatives (e.g., 

negundoin analogues), terpenoid lactones (e.g., kuguacin P), and 

alkaloid scaffolds (e.g., balsamiferine D). Importantly, these 23 

compounds displayed favorable oral bioavailability and low 

predicted toxicity (Table 1), supporting their candidacy for 

downstream docking studies. 

Table 1. Quantitative Estimate of Druglikeness (QED) and 

Predicted ADMET Profiles of Top Hits 

Compound 

H
IA

 (
%

) 

B
B

B
 

P
en

et
ra

ti
o
n

 

O
ra

l 

B
io

a
v

a
il

a
b

il
it

y
 

h
E

R
G

 R
is

k
 

H
ep

a
to

to
x

ic
it

y
 

Q
E

D
 

Kuguacin P High Low Moderate None None 0.62 

Negundol 1b High Negligible High None None 0.69 

Negundoin A High Low High None Low 0.53 

Negundoin E 
Mode

rate 
Low High Low None 0.70 

Balsamiferine D High Low Moderate None None 0.61 

 

Validation of Docking Protocol 

To ensure the reliability of docking simulations, blind docking was 

performed using the control drug sulbactam—a known β-

lactamase inhibitor (Penwell, 2015). The docking 

reproduced experimentally reported active sites in both IMP-1 and 

OXA-24 (Figure 1), confirming the robustness of the grid box 

parameters and search algorithm (Lamarckian Genetic Algorithm, 

AutoDock4). For IMP-1, sulbactam docked within the zinc-

coordinated catalytic groove, interacting with key residues 

(His116, His118, His196, Asp120) that stabilize the two zinc ions 

essential for hydrolysis (Pongchaikul & Mongkolsuk, 2022). 

For OXA-24, sulbactam localized within the STFK tetrad-centered 

active site, forming hydrogen bonds with Ser81 and stacking 

interactions with Tyr112 and Met223 side chains, consistent with 

crystallographic data (Santillana et al., 2007).  
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a) 

 

b) 

Figure 1. Docking pose of sulbactam from blind docking with 

a) IMP-1 metallo-β-lactamase and b) OXA-24 β-lactamase, 

showing alignment within the predefined grid box 

corresponding to literature-identified active sites. 

Molecular Docking of Phytochemicals 

The 23 screened ligands were docked into the validated binding 

pockets of IMP-1 and OXA-24. Average binding energies reached 

as high (i.e., most negative) as –10.9 kcal/mol, with several ligands 

outperforming sulbactam (–6.7 kcal/mol). The top hits (Figure 2) 

included Kuguacin P, Negundol 1b, Negundoin A, Negundoin E, 

and Balsamiferine D, listed in decreasing order of average binding 

energy against the two targets (Table 2). 

 

Kuguacin P 

 

Negundol 1b 

 

Negundoin A 

 

Negundoin E 

 

Balsamiferine D 

Figure 2. Chemical structures of the top five hits from 

molecular docking studies. 

 

Table 2. Molecular Docking Results of Top Five Compounds vs. 

Control Drug 
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Kuguacin P 
Momordica 

charantia 
–11.4 –10.3 –10.9 

Negundol 1b Vitex negundo –7.0 –8.0 –7.5 

Negundoin A Vitex negundo –7.2 –7.6 –7.4 
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Negundoin E Vitex negundo –7.0 –7.7 –7.4 

Balsamiferine 

D 

Blumea  

balsamifera 
–7.7 –6.9 –7.3 

Sulbactam* synthetic –7.2 –6.1 –6.7 

* Control 

In silico analysis of several IMP-type metallo-β-lactamases 

(MBLs) revealed that the conserved sequence in the active site 

consists of His95, Phe96, His97, Asp99, Ser100, His157, Cys176, 

and His215. These enzymes contain two zinc (II) ions bound to the 

active site (Palacios et al., 2020; Chidambaranathan & Culathur, 

2022; Pongchaikul et al., 2022; Macrì et al., 2023; Fiodorova, 

2024), which were included in the binding site set for molecular 

docking analysis with IMP-1. The docking results showed that the 

active site residues interacted with the top 5 docked ligands, which 

were identified based on binding energies. Notably, His157 and 

His215 were consistently involved in interactions across all top 

hits. Although their direct role in IMP-1 resistance remains 

unclear, both are coordinated with one of the zinc atoms in the 

active site (Shakibaie et al., 2017; Chidambaranathan & Culathur, 

2022; Pavithra et al., 2023). 

Other active site residues, including His95, Phe96, His97, and 

Asp99, also demonstrated interactions with the ligands. Some 

ligands exhibited a higher number of interacting residues 

compared to the control drug, suggesting stronger binding affinity 

and a potentially greater inhibitory effect against IMP-1. These 

findings underscore the importance of further investigation into the 

functional significance of conserved residues and their role in 

ligand binding and enzyme inhibition. 

The binding site for molecular docking with OXA-24 was defined 

to include the STFK tetrad and the tunnel-like entrance formed by 

Tyr112 and Met223. The conserved Ser residue within the STFK 

tetrad is crucial for catalytic activity, and ligand interaction with 

this residue may indicate probable inhibition of OXA-24 (Palacios 

et al., 2020). Docking results showed that all top 5 phytochemical 

ligands interacted with Ser81, while also engaging Tyr112 and 

Met223, which help orient inhibitors toward the active center. 

Previous in silico studies demonstrated that occupying this tunnel-

like entrance, as in the case of QPX7728, contributes to vigorous 

inhibitory activity (Lence et al., 2021). Additionally, multiple 

residues interacted with the ligands, suggesting stronger binding 

affinity and inhibitory potential compared to the control drug.  

Kuguacin P, a cucurbitane triterpenoid, ranked first for both IMP-

1 and OXA-24 and has been reported to show weak anti-HIV-1 

activity in vitro (Chen et al., 2009; Pavithra et al., 2023). 

Negundoin A, negundoin E, and negundol 1b are derived 

from Vitex negundo(lagundi), a plant with documented 

antimicrobial activity, including bactericidal effects of its ethyl 

acetate leaf extract against multidrug-resistant Klebsiella 

pneumoniae (Palaninathan et al., 2022). Meanwhile, balsamiferine 

D is a sesquiterpene derived from Blumea balsamifera (sambong), 

a plant renowned for its anti-bacterial properties against both 

Gram-positive and Gram-negative pathogens (Ismail et al., 2022). 

Balsamiferine compounds have also been shown to inhibit LPS-

induced nitric oxide production in microglial BV-2 cells (Xu et al., 

2012). These findings support the potential of the identified 

phytochemicals as lead compounds for the development of further 

inhibitors. 

The discovery that natural phytochemicals can inhibit both class B 

(IMP-1) and class D (OXA-24) β-lactamases holds strong clinical 

promise against carbapenem-resistant A. baumannii. Compounds 

such as Kuguacin P exhibit favorable ADMET properties—high 

intestinal absorption, low plasma protein binding, and non-

hepatotoxic predictions—supporting their potential as druggable 

adjuvant inhibitors, akin to clavulanic acid in combination with 

amoxicillin. Unlike conventional synthetic scaffolds, these 

phytochemicals derive from traditional medicinal plants, offering 

ethnopharmacological validation and a novel chemical space. This 

study is the first to highlight Kuguacin P, negundoin derivatives, 

and Balsamiferine D as dual inhibitors of IMP-1 and OXA-24, 

expanding the landscape of plant-derived β-lactamase inhibitors 

beyond prior flavonoid-based reports. 

Conclusion 

This study systematically identified and evaluated phytochemicals 

from the Philippines’ 10 Halamang Gamot (Medicinal Plants) as 

potential inhibitors of two critical β-lactamases in A. baumannii. 

Through QED and ADMET filtering, molecular docking, and 

interaction analyses, five phytochemicals emerged as promising 

candidates, with Kuguacin P consistently demonstrating the 

strongest dual inhibitory potential against IMP-1 and OXA-24. 

These findings underscore the untapped potential of Philippine 

medicinal plants in antimicrobial drug discovery, offering a 

compelling rationale for experimental validation and further 

optimization. 
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