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Abstract 

The present study focuses on the non-nutritional causes of 

dyslipidemia, including an increase in both atherogenic (LDL) and 

antiatherogenic (HDL) lipid fractions. The prospective study 

included 180 patients aged 30-65 years with a normal BMI, but 

persistent changes in the lipid profile that persisted despite dieting. 

A comprehensive analysis of endocrine, genetic, microbiomic, and 

environmental factors, as well as their relationship to clinical 

manifestations, has been performed. The results revealed a high 

prevalence of non-nutritional causes of dyslipidemia: 18% of 

patients had subclinical hypothyroidism, 15% had genetic variants 

in the LDLR, PCSK9, and APOE genes, and 22% had elevated 

levels of heavy metals (cadmium, lead). The characteristic external 

signs were local lipid deposits (xanthelasms, tendon xanthomas) 

and specific skin changes ("greasy" shine, hyperemia), 

independent of BMI. Patients with elevated HDL exhibit a 

paradoxical phenotype, characterized by a combination of high 

HDL levels with signs of early aging and vascular changes. The 

study confirmed the importance of chronic stress, sleep disorders, 

and occupational hazards in the development of dyslipidemia. The 

findings underscore the importance of advanced diagnosis in 

patients with dyslipidemia of unknown origin, including 

assessments of hormonal status, microbiome, and toxicological 

screening. The results open up new possibilities for personalized 

therapy aimed at correcting the identified metabolic disorders. 
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Introduction  

Cardiovascular diseases (CVD) continue to be the leading cause of 

death worldwide, claiming about 17.9 million lives annually, 

according to WHO (Goldsborough et al., 2022; Kalra & Raizada, 

2024). While elevated low-density lipoprotein (LDL) cholesterol 

has long been recognized as a key modifiable risk factor for 

atherosclerosis, modern research demonstrates that the 

pathogenesis of dyslipidemia goes far beyond the traditional 

understanding of the effects of nutrition (Shaya et al., 2022; 

Balling et al., 2023; Hernando-Redondo et al., 2025). A 

comprehensive study of non-food factors that can affect both "bad" 

(low-density lipoproteins, LDL) and "good" cholesterol (high-

density lipoproteins, HDL) is of particular clinical importance 

(Patil, 2022; Nouri et al., 2023a, 2023b; Watanabe et al., 2024). 

Epidemiological data from the last decade reveal a paradoxical 

situation: in a significant proportion of patients with dyslipidemia 

(according to various estimates, from 15% to 40%), traditional 

dietary recommendations do not lead to normalization of the lipid 

profile (Del Bo' et al., 2023; Dongmo & Tamesse, 2023; Passos et 

al., 2023). Moreover, isolated increases in HDL (hyper-alpha-

lipoproteinemia) are increasingly common in clinical practice, 

which, contrary to expectations, may be associated with an 

increased cardiovascular risk (Chen et al., 2023; Mo et al., 2025). 

These observations compel us to reassess the well-established 

concepts regarding the regulation of cholesterol metabolism and 

necessitate a comprehensive examination of alternative 

mechanisms underlying dyslipidemia. 
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Modern lipidology identifies several key indicators that require a 

comprehensive assessment in patients with impaired cholesterol 

metabolism. In addition to the standard lipid profile (total 

cholesterol, LDL, HDL, triglycerides), the following parameters 

have gained particular diagnostic significance: lipoprotein(a) 

[Lp(a)] level, apolipoprotein B (apoB), the apoB/apoA1 ratio, as 

well as small dense LDL (sdLDL) particle levels (Fiodorova et al., 

2022; Antoni, 2023; Huang et al., 2025). Markers of systemic 

inflammation (ultrasensitive C-reactive protein, interleukin-6) are 

equally important, since inflammatory processes directly affect 

lipid metabolism through changes in the activity of key enzymes 

and receptors (Qiu et al., 2023; Domingues-Hajj et al., 2024). 

Among the non-food factors potentially affecting the cholesterol 

profile, endocrine disorders deserve special attention. Even 

subclinical hypothyroidism (TSH > 4 mIU/L with normal fT4) can 

increase total cholesterol levels by 20-30% due to a decrease in 

LDL receptor expression in the liver (Berberich & Hegele, 2022; 

Szczepanek-Parulska et al., 2022). Similarly, chronic stress and 

associated hypercortisolemia stimulate de novo cholesterol 

synthesis through activation of HMG-CoA reductase, while 

reducing LDL catabolism (Gonçalves, 2022; Wang et al., 2025). 

Insulin resistance, regardless of the presence of diabetes mellitus, 

is associated with characteristic changes in the lipid spectrum: 

increased triglycerides, decreased HDL, and an increase in the 

sdLDL fraction (Sadovoy et al., 2017; Dipalma et al., 2022; El-

Hendy et al., 2023; Shahmoradi et al., 2024). 

Genetic prerequisites play a crucial role in regulating cholesterol 

metabolism. In addition to the known monogenic forms (familial 

hypercholesterolemia caused by mutations in the LDLR, APOB, 

or PCSK9 genes), polygenic variants of dyslipidemia are attracting 

increasing attention (Brunham & Trinder, 2022; Deshotels et al., 

2022). Genetic studies of genome-wide association search 

(GWAS) have identified more than 150 loci associated with 

variations in lipid levels, many of which are involved in processes 

not directly related to nutrition, such as inflammation, intracellular 

transport, and signaling cascades (Sadovoy et al., 2016; Kardassis 

et al., 2022; Pisano et al., 2023; Gao et al., 2024). 

Environmental factors represent another poorly understood aspect 

of dyslipidemia pathogenesis. Heavy metals (cadmium, lead, 

mercury) They can disrupt the function of liver cells, leading to an 

imbalance in lipoprotein synthesis and clearance (Kaneko et al., 

2022; Li et al., 2022; Bolay et al., 2024). Persistent organic 

pollutants (dioxins, polychlorinated biphenyls) alter the expression 

of genes involved in lipid metabolism through the activation of aryl 

carbohydrate receptors (Shan et al., 2020; Bulusu & Cleary, 2023; 

Del Piano et al., 2025). Of particular concern is the effect of 

microplastics, which, in experimental models, demonstrates the 

ability to disrupt the enterohepatic circulation of bile acids —a key 

process in maintaining cholesterol homeostasis (Cheng et al., 

2022). 

Disturbances in circadian rhythms and sleep quality are another 

significant factor that modifies the lipid profile. Clinical studies 

have shown that night shift workers experience a 10-15% increase 

in LDL levels compared to control groups, even with a comparable 

diet (Li et al., 2020; AlHussain et al., 2022; Petrenko et al., 2023). 

These changes are associated with impaired circadian regulation of 

genes controlling cholesterol synthesis and catabolism (SREBP2, 

LDLR, and CYP7A1) (Frazier et al., 2023; Pereira et al., 2024). 

The intestinal microbiome, recognized today as a "metabolic 

organ", has a complex effect on cholesterol metabolism through 

several mechanisms: modification of bile acids, production of 

short-chain fatty acids, regulation of the intestinal barrier, and 

systemic inflammation (Aron-Wisnewsky et al., 2021; Jian et al., 

2022; Brown et al., 2023; Shaheen et al., 2023). Of particular 

interest are bacteria with the ability to metabolize cholesterol (for 

example, representatives of the genera Bacteroides, 

Bifidobacterium, and Lactobacillus), whose activity can vary 

significantly from individual to individual (Zhong et al., 2022; 

Tang et al., 2024). 

Pharmacological factors are often overlooked when assessing the 

causes of dyslipidemia. Prolonged use of beta-blockers (especially 

non-selective ones), thiazide diuretics, retinoids, cyclosporine, 

antiretroviral drugs, and many other medications can lead to 

significant changes in the lipid profile. Hormone replacement 

therapy has a similar effect, depending on the type and route of 

hormone administration. Figure 1 shows the main causes and 

consequences of high cholesterol.
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Figure 1. Causes and consequences of high cholesterol. 

 

The purpose of this study is to conduct a systematic analysis of 

non-food factors contributing to the development of dyslipidemia, 

with an emphasis on their effects on both atherogenic (LDL, Lp(a), 

triglycerides) and antiatherogenic (HDL) lipoprotein fractions. 

Special attention is paid to the comprehensive assessment of 

endocrine, environmental, genetic, and iatrogenic causes of 

cholesterol metabolism disorders, which enables the development 

of personalized approaches to the diagnosis and treatment of these 

conditions. 

Materials and Methods 

Research Design 

The present work is a prospective cohort study performed based on 

a Regional Cardiology Dispensary (Vladikavkaz, Republic of 

North Ossetia-Alania, Russia). Between September 2022 and May 

2024, 180 patients of both sexes, aged 30 to 65 years, who met 

strict selection criteria, were included in the study. The primary 

inclusion criterion was the presence of persistent changes in the 

lipid profile, defined as LDL levels above 3.0 mmol/L and/or 

elevated HDL levels (more than 2.2 mmol/L for women and 1.9 

mmol/L for men), which persisted despite adherence to standard 

dietary recommendations for at least three months. The exclusion 

criteria included patients with diagnosed diabetes mellitus of any 

type, severe obesity (BMI exceeding 35 kg/m2), receiving lipid-

lowering therapy, as well as pregnant women. 

Methods of Laboratory Diagnostics 

A comprehensive laboratory examination of the participants 

included a detailed analysis of the lipid spectrum with the 

determination of LDL, HDL, triglycerides, apolipoproteins B and 

A1, as well as lipoprotein(a) using modern immunoturbidimetric 

methods. The endocrine status was assessed by measuring the 

levels of thyroid-stimulating hormone, free thyroxine, cortisol, and 

insulin, followed by calculating the HOMA-IR insulin resistance 

index. Genetic testing included the analysis of polymorphisms in 

key genes involved in lipid metabolism, specifically LDLR, 

PCSK9, and APOE (Futema et al., 2021; Warden et al., 2024). 

Sequencing of the 16S rRNA gene was used to characterize the 

intestinal microbiocenosis (Church et al., 2020; Dhanasekar et al., 

2022; Graefen et al., 2023; Zhang et al., 2023). Concentrations of 

heavy metals (lead, cadmium, mercury) in biological samples were 

determined by inductively coupled plasma mass spectrometry. 

Assessment of Influencing Factors 

Special attention was given to the analysis of non-food factors that 

may affect lipid metabolism. To quantify the level of chronic 

stress, the validated PSS-10 Perceived Stress Scale was used in 

conjunction with the determination of cortisol levels in saliva 

samples. Sleep quality was assessed using the standardized PSQI 

questionnaire (Sancho-Domingo et al., 2021; Makhoahle & 

Gaseitsiwe, 2022). The collection of data on occupational hazards 

included an analysis of the duration of work in a chemical 

production environment. The intake of medications that potentially 

affect the lipid profile was carefully documented. An objective 

assessment of physical activity was conducted using 

accelerometers over a seven-day monitoring period. 

Statistical Data Processing 

The data obtained were subjected to complex statistical processing 

using specialized software Statistica 12.0. To compare quantitative 

indicators between groups, the parametric Student's t-test and the 

nonparametric Mann-Whitney U-test were used, depending on the 

nature of the data distribution. The relationships between the 

parameters were evaluated using the Spearman rank correlation 

coefficient. A multifactorial analysis was conducted using the 

construction of logistic regression models. In all types of analysis, 
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the statistical significance of the differences was established at a 

level of p<0.05. 

Results and Discussion 

The study revealed significant differences in clinical 

manifestations in patients with non-food forms of dyslipidemia. In 

contrast to the classic cases of alimentary origin, 68% of the 

examined (n=122) had a normal body mass index (22-26 kg/m2), 

which confirms the non-nutritional nature of the disorders. Upon 

visual examination, the characteristic signs included xanthelasma 

of the eyelids (in 23% of patients), tendon xanthomas (15%), and 

corneal lipoid deposits (8%). 42% of patients with elevated HDL 

had a specific "glossy" sheen of the skin of the face and neck, 

probably associated with changes in the lipid composition of 

sebum. 

The analysis of the lipid profile revealed pronounced changes in 

all patients examined. The average LDL level was 4.2±0.8 

mmol/L, while 31% of patients had a combination of elevated LDL 

(>3.5 mmol/L) and high HDL (>2.5 mmol/l). The concentration of 

lipoprotein(a) exceeded 50 mg/dL in 28% of the examined 

patients, indicating a significant genetic component to 

dyslipidemia (Table 1). 

Table 1. Main laboratory parameters 

Parameter Value (M±SD) Reference values 

LDL (mmol/L) 4.2±0.8 <3.0 

HDL (mmol/L) 2.4±0.6 1.0-2.2 

Triglycerides (mmol/l) 1.8±0.7 <1.7 

ApoV (g/l) 1.2±0.3 0.5-1.0 

Lp (a) (mg/dl) 48±32 <30 

The study revealed a significant prevalence of endocrine disorders: 

subclinical hypothyroidism (TSH >4 mEd/L) was found in 18% of 

patients, hypercortisolemia in 12% (Table 2). Genetic analysis 

showed the carriage of pathological LDLR and PCSK9 gene 

variants in 15% of the examined patients, and these patients had 

the most pronounced external manifestations (multiple xanthomas, 

early corneal lipoid arch). 

Table 2. Prevalence of non-food factors 

The factor 
Detection 

rate (%) 

Correlation 

with LDL (r) 

Hypothyroidism 18 0.42* 

Hypercortisolemia 12 0.38* 

Genetic mutations 15 0.51** 

Intestinal dysbiosis 34 0.29 

Increased levels of heavy metals 22 0.33* 

Note: * Correlation is statistically significant at p< 0.05; ** Correlation is 

highly significant at p<0.01; Values without * indicate non-significant 

correlations (p≥0.05). 

Visual assessment enabled the identification of characteristic 

features in patients with various types of dyslipidemia. The group 

with elevated LDL is characterized by pale skin (67%), dry skin 

(53%), and early graying of hair (41%). Patients with high HDL 

were characterized by facial hyperemia (58%), increased 

greasiness of the skin (49%), and unusual eye gloss (32%). It is 

essential to note that these external signs were not dependent on 

body mass index and were observed even in patients with weight 

deficiency (Table 3). 

Table 3. Comparative characteristics of phenotypes 

Sign 
Elevated 

LDL (n=112) 

Elevated 

HDL (n=68) 

p-

value 

Xanthelasma 28% 5% <0.001 

"Greasy" skin shine 12% 63% <0.001 

Early gray hair 41% 18% 0.003 

Facial hyperemia 22% 58% <0.001 

BMI (kg/m2) 24.1±3.2 23.8±3.5 0.72 

 

The analysis of the intestinal microbiota revealed a significant 

decrease in diversity in patients with dyslipidemia (Shannon index: 

3.1±0.8 versus 4.2±0.6 in the control group, p < 0.01). Especially 

pronounced changes were noted in the bacterial content of the 

genus Bacteroides. The determination of heavy metals showed an 

excess of permissible levels of cadmium in 22% of patients, lead 

in 15%, which significantly correlated with LDL values (r=0.33, 

p<0.05). 

A detailed analysis revealed significant metabolic changes in 

patients with non-nutritional dyslipidemia. The HOMA-IR insulin 

resistance index exceeded normal values in 29% of the examined 

individuals (2.8±1.1, with normal values <2.7), with the most 

pronounced abnormalities observed in patients with 

hypercortisolemia (Table 4). Ultrasound examination of the liver 

showed signs of non-alcoholic fatty liver disease in 34% of 

patients, despite the absence of obesity. The degree of steatosis 

correlated with the level of LDL (r = 0.41, p < 0.01) and the 

duration of exposure to occupational hazards (r = 0.38, p < 0.05). 

Table 4. Metabolic parameters and their correlation with the lipid 

profile 

Parameter 
Mean  

value 

Correlation 

with LDL 

Correlation 

with HDL 

HOMA-IR 2.8±1.1 0.39** -0.12 

Cortisol level (nmol/L) 648±215 0.42** 0.18 

Intima-media complex 

thickness (mm) 
0.92±0.18 0.51** 0.09 

Degree of hepatic steatosis 1.4±0.7 0.41** -0.21 

Note: * Correlation is statistically significant at p< 0.05; ** Correlation is 

highly significant at p<0.01; Values without * indicate non-significant 

correlations (p≥0.05). 

The study revealed significant differences in the manifestations of 

dyslipidemia between men and women. A combination of elevated 

LDL and high HDL was significantly more common in women 

(37% versus 12% in men, p < 0.001). External manifestations were 

also gender-specific: eyelid xanthelasmas occurred in 31% of 

women versus 14% of men (p = 0.008), while tendon xanthomas 
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prevailed in men (23% versus 8% in women, p = 0.003) (Rai et al., 

2022; Ison et al., 2025; Shen & Bao, 2025). Interestingly, the 

"glossy" sheen of the skin with elevated HDL was more 

pronounced in women (72% of cases versus 41% in men, p < 0.01). 

An analysis of the occupational history revealed a clear 

relationship between exposure to industrial toxicants and the 

characteristics of the lipid profile. Chemical industry workers 

(n=27) had significantly higher LDL levels (4.8±0.9 mmol/l versus 

4.0±0.7 mmol/L in the general group, p<0.01) and more 

pronounced external manifestations (xanthomas in 37%, corneal 

lipoid arch in 19%). It is noteworthy that in this category of 

patients, even with a normal BMI, local deposition of adipose 

tissue in the paraorbital region was often observed (41% of cases). 

An important discovery of the study was the identification of a 

specific "metabolic phenotype" in patients with non-nutritional 

dyslipidemia. The characteristic features were: 

• a paradoxical combination of external slimness with local lipid 

deposits (xanthomas, paraorbital fat deposits) (Sil et al., 2021; 

Marogi et al., 2022) 

• early signs of aging (gray hair, uneven skin tone) with normal 

chronological age (Kılıç et al., 2021) 

• specific skin changes (uneven greasiness, areas of hyperemia) 

(Johnson et al., 2020) 

• visible vascular pattern on the skin of the chest and neck (in 

39% of patients with high HDL) 

These external markers can serve as valuable diagnostic signs for 

the timely detection of non-nutritional forms of dyslipidemia in 

clinical practice (Girkantaite et al., 2022). The data obtained 

emphasize the need for an integrated approach to diagnosing lipid 

metabolism disorders that extends beyond the traditional 

assessment of eating habits and anthropometric indicators. 

Conclusion 

The study reveals the intricate relationship between non-food 

factors and the development of dyslipidemia, significantly 

expanding the modern understanding of the pathogenesis of lipid 

metabolism disorders. The data obtained indicate the existence of 

a special group of patients with a characteristic metabolic 

phenotype, in whom changes in the lipid profile develop 

independently of nutritional factors and do not correlate with body 

mass index. The identification of specific external markers, such 

as local lipid deposits, changes in skin quality, and early signs of 

aging, opens up new possibilities for the clinical diagnosis of these 

conditions. 

The results of the study emphasize the importance of a 

comprehensive approach to the assessment of dyslipidemia, 

including not only a standard lipid profile, but also an assessment 

of endocrine, genetic, microbiomic, and occupational factors. The 

revealed relationship between chronic stress, circadian rhythm 

disorders, and changes in the lipid spectrum warrants special 

attention, indicating the need to incorporate these parameters into 

diagnostic algorithms. The discovery of a significant prevalence of 

genetic predispositions and the influence of ecotoxicants confirms 

the importance of a personalized approach to the management of 

patients with dyslipidemia. 

The clinical significance of the work lies in the development of 

new diagnostic criteria that allow the timely identification of 

patients with non-nutritional forms of lipid metabolism disorders. 

The identification of specific phenotypic features provides the 

basis for the development of targeted screening programs, 

particularly among workers in hazardous industries and 

individuals with hereditary conditions. The data obtained 

substantiate the need to review existing clinical guidelines, taking 

into account the identified non-nutritional risk factors. 

The prospects for further research include an in-depth study of the 

molecular mechanisms underlying the identified relationships, the 

development of personalized therapy algorithms, and the 

evaluation of the effectiveness of various intervention strategies. 

Of particular interest is the study of microbiome correction and 

detoxification approaches in patients with dyslipidemia caused by 

professional factors. The implementation of these areas will 

significantly improve the quality of care for patients with lipid 

metabolism disorders.  
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