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Abstract 

Recently, the use of bone grafts increased in medical practice. 

Some bone grafts may have different mechanical and biological 

properties of natural bone. To improve bone grafts we need to 

record our knowledge about bone. In this work, we are interested 

in determining the chemical composition of bone fluid in the knee 

joint as it is a lipid-predominant fluid. Bone samples were obtained 

from knee cancellous bone. Samples were used of women aged 60 

years old with osteoarthritis. Sample preparation is essential to 

guarantee the quality and dependability of the analysis results. 

Bone fluid was centrifuged for 15 minutes at 3000 rpm to eliminate 

the blood and debris. The supernatant was then gathered and 

filtered. Extraction of total lipids from the bone fluid according to 

the method of Bligh and Dyer (1959) with modification. The bone 

fluid of a fresh human cancellous bone was extracted by 

mechanical compression tests. It consists of 90% lipids. The fatty 

acid composition of the bone fluid was determined by gas 

chromatography. Methyl oleate is the most abundant. 
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Introduction  

In recent years, the use of bone grafts has increased in medical 

practice (Miron & Zhang, 2018; Henry et al., 2019; Tu et al., 2019; 

Khoury, 2020; Tavares & Sheikh, 2022). It is used in trauma 

surgery to replace bone damage and repair bone fractures, defects, 

orthopedic disorders, and arthrodesis (Nandi et al., 2010; 
Zimmermann & Moghaddam, 2011; Lobb et al., 2019; Brink, 

2021; Nazrul & Fareed, 2023). Some bone grafts may have 

different mechanical and biological properties of natural bone, 

which causes poor compatibility between bone and bone graft 

(Woodard et al., 2007; Schwarz & Herten, 2015; Kim et al., 2019; 

Chan et al., 2020; Böstman et al., 2021). In addition, immune 

reactions may occur in some individuals. Research continues to 

improve bone grafts by enhancing their biomechanical properties, 

biocompatibility, and ability to stimulate bone regeneration. There 

are many varieties of bone grafting, including autograft, allograft, 

and bone graft substitutes (Nazrul & Fareed, 2023). Cancellous 

autografts may be harvested from the proximal tibia, femur, 

calcaneum, olecranon, and distal radius (Schmidt, 2021). To 

improve bone grafts we need to record our knowledge about bone. 

In this study, we focus on characterizing the chemical composition 

of fluid inside the trabeculae of cancellous bone. This fluid 

participates in the response of the bone following mechanical 

loads. It is involved in the mechanical transduction of bone 

remodeling and transmitting information between bone cells 

(Jacobs et al., 1998; Qiu et al., 2002; Chen et al., 2003; 
Weatherholt et al., 2013; Lin et al., 2015; O'Carroll et al., 2018; 

Liu et al., 2019; Mi et al., 2019; Luo et al., 2020; Rubin & Rubin, 

2020). The fluid movement and bone microcracks act as a stimulus 

to initiate bone remodeling and locally activate osteocytes (Smith 

et al., 2019), which transform the mechanical stimulus into a 

biochemical or electrical signal by secreting molecules (nitric 

oxide, osteopontin) or by increasing their concentration of 

intracellular calcium (Burr et al., 2002; Sato & Enomoto-Iwamoto, 

2017; Vardakis et al., 2017). Authors found that the bone fluid has 

a composition similar to yellow bone marrow or blood plasma 

(Bakker et al., 2003; Ambrogini et al., 2010; Sansalone et al., 

2013; Gómez-Barrena et al., 2015; Burger & Klein-Nulend, 2017; 

Lu & Qin, 2018; Allen & Burr, 2019; Senel et al., 2019; Garnero 

et al., 2020; Aghaloo & Moy, 2021; Matsuoka et al., 2021; Stewart 

et al., 2021; Zhang et al., 2021). In this work, we are interested in 

determining the chemical composition of the knee joint bone fluid 

as it is a lipid-predominant fluid.  

Materials and Methods 

Samples Collection and Preparation 

Bone samples were obtained from knee cancellous bone. Samples 

were used of women aged 60 years old with osteoarthritis. Samples 

were recruited following the Guidelines of the Declaration of 

Helsinki following a protocol approved by the Ethics Committee 

of Rabta Hospital of Tunisia. The bone fluid inside the trabecular 

was obtained by mechanical compression test with the “LLOYd 

EZ50” machine. Then, the fluid was centrifuged at 3000 rpm for 

15 minutes at 37°C. The supernatant was collected, filtered, and 

distributed in tubes. The samples are kept by freezing at -20°C until 

used. 
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Extraction of total lipids from the bone fluid according to the 

method of Bligh and Dyer (1959) (Breil et al., 2017) with 

modification. The bone fluid was mixed with the extraction solvent 

consisting of a mixture of chloroform-methanol-distilled water (1: 

1 :1, v /v/v). Then, the lipid extract was used to methylation the 

fatty acid. 

Chemicals and Reagents 

Chemical reagents were used in the total lipids’ extraction 

(Chloroform CHCl3 and Methanol CH3OH). Chemical reagents 

were used for GC derivatization (CH3OH (0.5 M), 14% BF3, and 

petroleum ether (vapor pressure 7.99 psi at 20 °C). 

GC Analysis 

The GC used in this work was the Agilent 7890B gas 

chromatography. It consists of an Agilent CP6173 chromatography 

column (50 m * 250 μm * 0.2 μm). The flow rate was 1 ml/min. 

The initial oven temperature was 50 °C and held for 1 min. Then it 

rose to 210 °C for 10 min. The injector as standard. The injector 

volume was 1μl, and the temperature was 280°C. The detector 

temperature was 300°C, and the flow rate was 30 ml/min.  

The injector makes it possible to return the sample to the vapor 

state and drag it into the mobile phase at the entrance of the 

column. The gas phase passes through the column. The different 

molecules of the sample will separate according to the affinity of 

the stationary phase with these molecules and then pass through 

the detector that will measure the signal emitted by the sample 

compounds to be analyzed 

Results and Discussion 

Total lipid extraction allows us to determine the percentage of 

lipids in a bone fluid sample. It is constituted by 90% of lipids 

(Figure 2). The result of a GC analysis is a chromatogram which 

is a diagram showing the evolution of the detector signal (with 

respect to the solute concentration) as a function of the election 

time. The chromatogram provides qualitative analysis by 

identifying compounds by peak position and quantitative analysis 

by determining compound concentration by measuring peak area 

(Figure 1). The lipid composition of the human bone fluid shows 

the presence of saturated fatty acids such as myristic acid (C14:0), 

stearic acid (C18:0), palmitic acid (C16:0), arachidic acid (C20:0), 

and methyl heptadecanoid (C17:0). Unsaturated fatty acids such as 

the oleic acid (C18:1), gadoleic acid (C20:1), linoleic acid (C18:2), 

linolenic acid (C18:3) and palmitoleic acid (C16:1) (Table 1). 

 

Figure 1. chromatogram of the knee bone fluid (60-year-old 

woman) 

 

 

a) 

 

b) 

Figure 2. a) percentage of lipid in human bone fluid, b) fatty 

acid composition in osteoarthritis patient 

Table 1. Lipid bone fluid composition by gas chromatography 

No. RT Area % 

1 15.84 3.13854 0.19034 

2 16.39 392.87674 23.82673 

3 16.77 8.69672 0.52743 

4 17.08 3.98513 0.24169 

5 17.58 13.84467 0.83964 

6 18.15 670.40521 40.65795 

7 18.74 364.18152 22.08645 



25                                                                                                                                                        J Biochem Technol (2024) 15(2): 24-26 
 

 

 

8 19.51 12.00959 0.72834 

9 20.03 15.97711 0.96896 

10 20.99 14.56668 0.88342 

Table 2. Distribution of fatty acids in human bone fluid 

(Descriptive statistics) 

No. Name 
Mean 

(%) 

Standard 

deviation 

1 Myristic acid C14:0 0.66 0.76 

2 Palmitic acid C16:0 21.49 2.04 

3 C16:1 palmetoleic acid 0.87 0.98 

4 Heptadecanoic acid C17:0 0.23 0.01 

5 C18 stearic acid: 0 3.85 2.75 

6 C18 oleic acid: 1 43.11 5.72 

7 Linoleic acid C18:2 21.47 1.13 

8 Linolenic acid C18:3 0.77 0.05 

9 Arachidic acid C20:0 0.44 0.46 

10 11-eicosenoic acid C20:1 0.43 0.39 

A descriptive statistical study was done using SPSS software to 

determine the average value of each fatty acid and the standard 

deviation between the different samples studied (Table 2). The 

majority of compounds are oleic acid (43.1%), palmitic acid 

(21.48%), and linoleic acid (21.46%). Other compounds identified 

have lower percentages, citing stress acid (3.85%), acid myristic 

(0.66%), palmitoleic acid (0.87%), heptadecanoic acid (0.23%), 

acid arachidic acid (0.44%), 11-eicosanoid acid (0.43%) and -

linoleic acid (0.77%). 

Conclusion 

The bone fluid of a fresh human cancellous bone was extracted by 

mechanical compression tests. It consists of 90% lipids. The fatty 

acid composition of the bone fluid was determined by gas 

chromatography. Methyl oleate is the most abundant. The future of 

bone grafting appears promising, with studies evaluating the 

composition of different bone tissues such as the fluid inside the 

trabeculae. To augment bony healing we use material similar to 

that of bone. 
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