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Abstract 

Melioidosis, a frequently underdiagnosed yet potentially fatal 

disease in the Philippines, is caused by Burkholderia 

pseudomallei, a pathogen noted for rapidly acquiring antibiotic 

resistance. The bacterial enzyme dethiobiotin synthetase (DTBS), 

which functions as a dimer, is an attractive drug target because of 

its essential role in biotin biosynthesis. In this study, computer-

assisted drug discovery and development (CADDD) was 

employed to identify natural product inhibitors of the AlphaFold-

predicted structure of B. pseudomallei DTBS using the 

COCONUT natural products database. A receptor cavity was 

mapped and used to generate a pharmacophore model for virtual 

screening. Phenylalanine–isoleucine–arginine tripeptide was the 

chemical that fit the pharmacophore the best (pharmacophore fit 

value 1.58).  Molecular docking was used to further assess it, and 

the result was an interaction energy of -47.17 kJ/mol. Molecular 

dynamics simulation of the ligand–DTBS complex showed high 

stability and compactness, with low root mean square deviation 

and radius of gyration. Key interacting residues displayed minimal 

fluctuations, and the binding energy was more negative than that 

of reference co-crystallized DTBS homologs. Short-range 

interaction energies from Lennard-Jones and Coulombic potentials 

were –91.17 ± 5.0 kJ/mol and –195.28 ± 7.7 kJ/mol, respectively. 

The findings point to thermodynamically advantageous binding 

and the possibility that the top ligand could block DTBS by altering 

its active dimeric structure, offering a promising avenue for the 

creation of new anti-melioidosis drugs. 
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Introduction  

Melioidosis, or Whitmore’s disease, is a potentially fatal infection 

caused by Burkholderia pseudomallei. Acute cases often present 

with sepsis, abscesses, or pneumonia, while chronic melioidosis 

may persist for at least two months (Wiersinga et al., 2018). Major 

risk factors include diabetes mellitus, thalassemia, and frequent 

exposure to contaminated soil, making rice farmers and diabetic 

patients particularly vulnerable (Suputtamongkol et al., 1999; 

Cheng & Currie, 2005; Selvam et al., 2022). Although endemic in 

Southeast Asia and northern Australia, the disease remains largely 

underdiagnosed and underreported (San Martin et al., 2018; Saito 

et al., 2022; Kaewrakmuk et al., 2023). Fatality rates can reach 

50% if early diagnosis and treatment are missed (Princess et al., 

2017; Wiersinga et al., 2018). 

The causative agent B. pseudomallei is a motile, gram-negative 

soil saprophyte capable of surviving in harsh environmental 

conditions, including nutrient-deficient, acidic, or basic settings, 

and even in the presence of disinfectants (Cheng & Currie, 2005; 

White, 2013). While host antibodies frequently fall short of 

providing adequate immunity, once within the host, it can live and 

proliferate within neutrophils and macrophages (Cheng & Currie, 

2005). Treatment is further complicated by the bacterium’s ability 

to acquire and stably maintain antibiotic resistance (Schweizer, 

2012), reinforcing the need for novel and more effective 

therapeutic agents. 

One promising bacterial drug target is dethiobiotin synthetase 

(DTBS), a key enzyme in the biotin biosynthesis pathway that 

catalyzes the conversion of 7,8-diaminopelargonic acid (DAPA) to 

dethiobiotin (Krell & Eisenberg, 1970; Schumann et al., 2021). 

DTBS is considered essential for bacterial survival, and no human 

orthologs have been identified, making it a highly specific and 

“druggable” target (Schumann et al., 2021; Khan et al., 2022). 

Previous studies have explored both in vivo and in silico 

approaches to identify inhibitors of B. pseudomallei and other 

pathogenic bacteria (Challacombe, 2017; Ross et al., 2018; Díaz-

Sáez et al., 2019; Watkins, 2019; Khan et al., 2022). 

In this study, computer-aided drug discovery and development 

(CADDD) was applied to identify natural product inhibitors of B. 

pseudomallei DTBS. Traditional natural product drug discovery is 

time-consuming and labor-intensive, whereas in silico screening of 

large natural product libraries offers a faster, more efficient 

strategy (Yu & MacKerell, 2017). By screening compounds from 

the Collection of Open Natural Products (COCONUT) database 

(https://coconut.naturalproducts.net) and evaluating their binding 

to the AlphaFold-predicted DTBS structure, this work aims to 

identify promising lead compounds. Such computationally derived 

candidates provide a foundation for future in vitro and in vivo 

validation, supporting the development of novel therapies against 

multidrug-resistant melioidosis. 
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Materials and Methods 

This study employed a computer-aided drug discovery and 

development (CADDD) workflow to identify potential natural 

product inhibitors of Burkholderia pseudomallei dethiobiotin 

synthetase (Bp DTBS). The approach integrated structure-based 

pharmacophore modeling, virtual screening of natural product 

libraries, pharmacokinetic filtering, molecular docking, and 

molecular dynamics (MD) simulation. 

Retrieval and Validation of the Bp DTBS Structure 

The three-dimensional (3D) model of Bp DTBS (strain 668) was 

obtained from the AlphaFold Protein Structure Database 

(https://alphafold.ebi.ac.uk/entry/A3N521). To validate this 

predicted structure, it was superimposed onto the crystal structure 

of Mycobacterium tuberculosis DTBS (PDB ID: 3FGN) retrieved 

from the RCSB Protein Data Bank 

(https://www.rcsb.org/structure/3FGN). Structural quality was 

evaluated using the ERRAT program in SAVES v6.0 

(https://saves.mbi.ucla.edu) and the Verify 3D (Profiles-3D) 

protocol in Discovery Studio (DS). 

Pharmacophore Modeling and Virtual Screening 

A structure-based pharmacophore was created using the 

Interaction Generation methodology after the primary ligand-

binding cavity of Bp DTBS was discovered in DS.  The final 

pharmacophore model was created by keeping cluster centres of 

important interaction properties, such as hydrophobic sites, 

hydrogen bond donors, and hydrogen bond acceptors. A compound 

library of 406,747 natural products and natural product derivatives 

from the Collection of Open Natural Products (COCONUT) was 

first filtered using ADMETlab 3.0 for drug-likeness and 

pharmacokinetic properties. Screening criteria included no 

violations of Lipinski’s rule of five, >30% predicted human 

intestinal absorption, F50 (oral bioavailability) <50%, 

log(brain/blood) > –1, non-inhibition of cytochrome P450 

enzymes, absence of PAINS (pan-assay interference compounds), 

and non-carcinogenic, non-acutely toxic substructures. 

Compounds passing these filters were virtually screened against 

the pharmacophore using the Screen Library protocol in DS, 

retaining only molecules matching at least two pharmacophore 

features (Ruchin et al., 2022; Rudayni et al., 2022; Spirito et al., 

2022; Sugimori et al., 2022; Kiedrowicz et al., 2023; Kulkarni et 

al., 2023; Dorn et al., 2024; Mao et al., 2024). 

Molecular Docking 

Top-fitting ligands from the pharmacophore screen were docked to 

the prepared Bp DTBS model using the CDOCKER module in DS. 

Interaction energies and overall binding energies were calculated, 

and compounds were ranked accordingly. Among the 20 highest-

ranking ligands, the top candidate was selected based on the most 

negative interaction energy and the best pharmacophore fit value 

(Özatik et al., 2023; Shahzan et al., 2023). 

Molecular Dynamics Simulation 

The Bp DTBS–top ligand complex was subjected to MD 

simulation using GROMACS 2022.3 on the Computational and 

Archiving Research Environment (COARE) of the Department of 

Science and Technology–Advanced Science and Technology 

Institute (DOST–ASTI). CHARMM36 all-atom force field 

parameters were applied. The complex was solvated in a TIP3P 

water-filled dodecahedral box with Na⁺ counter-ions and subjected 

to energy minimization. System equilibration was performed under 

constant volume (NVT) and constant pressure (NPT) ensembles 

for 1 ns each. A 100 ns production run followed, with coordinates 

saved every 0.1 ns. Trajectory analyses included root mean square 

deviation (RMSD), root mean square fluctuation (RMSF), radius 

of gyration (Rg), and hydrogen bond monitoring to evaluate 

structural stability and binding mode of the ligand within the active 

site (AlShammasi et al., 2024; Ravoori et al., 2024). 

Results and Discussion 

This study employed a computer‐aided drug discovery strategy to 

identify natural product inhibitors of Burkholderia 

pseudomallei dethiobiotin synthetase (Bp DTBS). A structure-

based pharmacophore was derived from the AlphaFold-predicted 

Bp DTBS model, which was then used to virtually screen natural 

products from the COCONUT database. Filtered ligands were 

docked to the predicted structure, and the top complex was 

evaluated by molecular dynamics (MD) simulation. 

Validation of the AlphaFold Bp DTBS Structure 

Because no crystal structure of Bp DTBS is available, an 

AlphaFold model (https://alphafold.ebi.ac.uk/entry/A3N521) was 

used. AlphaFold predicts protein folds using deep learning 

informed by multiple sequence alignments and homolog structures 

(Terwilliger et al., 2024). Homologous DTBS crystal structures 

from Mycobacterium tuberculosis (Mtb) and Helicobacter pylori 

have been deposited in the RCSB PDB. Superimposition of the Bp 

and Mtb DTBS structures gave an RMSD of 7.94 Å (Figure 1), 

largely attributable to differences in unstructured loop regions and 

to the fact that AlphaFold predicts a monomer whereas the Mtb 

enzyme is crystallized as a homodimer (Alexeev et al., 1994; Dey 

et al., 2010). 

 
Figure 1. Superimposition of the AlphaFold-predicted B. 

pseudomallei DTBS structure (cyan) with the M. 

tuberculosis DTBS crystal structure (green) 

Model-quality metrics confirmed the reliability of the predicted 

fold. ERRAT analysis yielded a 93.2% overall quality factor 
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(Colovos & Yeates, 1993), and the Verify 3D (Profiles-3D) score 

was 124.16, exceeding the expected high score of 109.0 (Eisenberg 

et al., 1997). These results indicate that the AlphaFold model is 

suitable for downstream in silico analyses. 

ADMET-Based Filtering of Natural Products 

The 406,747 compounds in the COCONUT database were 

evaluated with ADMETlab 3.0 (Dong et al., 2018; Xiong et al., 

2021) using standard drug-likeness and pharmacokinetic filters 

(Lipinski compliance, >30 % intestinal absorption, F50 < 50 %, 

log brain/blood > –1, non-inhibition of CYP450, absence of 

PAINS, non-carcinogenic, and no acute-toxicity fragments). Only 

2,272 compounds passed, highlighting the stringency of oral drug-

likeness criteria and the need for early exclusion of unsuitable 

candidates (Ferreira & Andricopulo, 2019). 

Pharmacophore Generation and Screening 

A major receptor cavity was identified near the monomer terminus. 

Although the DTBS active site is normally formed only in the 

dimer, targeting this pocket could allow ligand-induced 

conformational changes that disrupt dimerization (Alexeev et al., 

1994; Dey et al., 2010). The pharmacophore comprised 4 

hydrogen-bond acceptors, 6 donors, and 14 hydrophobic features. 

Of the ADMET-filtered compounds, 990 fitted at least two 

pharmacophore features, with fit scores from 0.00005 to 2.93. 

Higher fit values indicate closer mimicry of the receptor’s 

interaction environment (Opo et al., 2021). 

Molecular Docking 

Docking of the 990 fitted ligands with the CDOCKER protocol 

(Wu et al., 2003) produced 5,196 refined poses from 289 

compounds. Among the 20 best-scoring ligands (Table 1), most 

were small natural peptides or peptide-like molecules, consistent 

with the antimicrobial activity of many natural peptides (Huan et 

al., 2020; Wang et al., 2022). The top ligand, a tripeptide of 

phenylalanine–isoleucine–arginine (Figure 2), displayed an 

interaction energy of –55.26 kJ mol⁻¹ and a pharmacophore fit 

value of 1.58. 

Table 1. Top 20 docking poses: CDOCKER interaction and 

overall energies (kcal/mol) with corresponding pharmacophore fit 

values. 

Index Interaction Energy Overall Energy Fit Value 

1666* -55.26 -56.29 1.58 

1047 -50.31 -50.11 0.40 

3636 -50.05 -50.38 0.63 

3847 -51.16 -46.65 0.44 

3848 -49.61 -46.57 0.44 

1048 -48.15 -49.01 0.40 

1055 -49.36 -46.78 0.40 

621 -52.91 -44.94 1.52 

4389 -50.03 -45.79 0.40 

1054 -49.20 -46.80 0.40 

1052 -48.05 -47.49 0.40 

1513 -47.61 -47.91 0.33 

1056 -47.81 -46.74 0.40 

3637 -48.18 -44.96 0.63 

1705 -50.89 -42.59 0.68 

3640 -47.93 -44.18 0.63 

3621 -47.10 -46.40 0.62 

1049 -46.77 -48.71 0.40 

3032 -48.59 -43.08 0.57 

*The selected top ligand for MD simulation  

 
Figure 2. Structure of the phenylalanine–isoleucine–arginine 

tripeptide 

MD Simulation of the Top Ligand–Bp DTBS Complex 

The docked complex (Figure 3) was simulated for 100 ns in 

GROMACS 2022.3 using the CHARMM36 force field. Key 

hydrogen bonds were observed between ligand carbonyl/amine 

groups and Asp113, Ser2, and Arg35, with π-alkyl contacts 

involving Met1 and Leu34. 

 
a 

 
b 

Figure 3. a) Docked complex of the top ligand with Bp DTBS 

and b) visualized protein–ligand interactions generated in 

Discovery Studio 

Backbone RMSD averaged 0.393 nm, indicating good structural 

stability with a slight upward drift suggesting a possible ligand-



J Biochem Technol (2025) 16(2): 113-119                                                                                                                                                  116 
 

 

 

induced conformational transition (Figure 4a). The radius of 

gyration (Rg) decreased to an average of 1.742 nm and stabilized, 

implying increased protein compactness (Figure 4b). Such ligand-

induced compaction has been linked to inhibition of dimer 

formation in related enzymes (Kumar et al., 1980). 

 
a 

 
b 

Figure 4. a) RMSD profile and b) radius of gyration (Rg) 

profile of the Bp DTBS–ligand docked complex 

Residues directly contacting the ligand showed minimal RMSF 

(Figure 5a), confirming local stability. Larger fluctuations at 

Gly51 and Pro82 (near ATP/Mg²⁺ binding residues) suggest 

possible interference with cofactor binding. The ligand maintained 

~3–4 hydrogen bonds during most of the simulation (Figure 5b), 

consistent with stable binding. 

 
a 

 
b 

Figure 5. a) RMSF profile of the Bp DTBS–ligand docked 

complex, with residues highlighted that were identified by DS 

as interacting with the top ligand. b) Number of hydrogen 

bonds formed during the MD simulation of the Bp DTBS–top 

ligand complex. 

Average Lennard-Jones and Coulombic short-range interaction 

energies were –91.17 ± 5.0 kJ mol⁻¹ and –195.28 ± 7.7 kJ mol⁻¹, 

respectively (Figure 6), indicating strong van der Waals and 

electrostatic interactions. These values are more negative than 

those reported for small-molecule ligands of Mtb DTBS (–45.85 to 

–73.93 kJ mol⁻¹); (Rampogu et al., 2023), supporting the 

thermodynamic favorability of the identified tripeptide. 

 
Figure 6. Lennard-Jones (red) and Coulombic (black) short-

range interaction energy profiles of the Bp DTBS–top ligand 

docked complex. 

The combined pharmacophore screening, docking, and MD data 

suggest that the phenylalanine–isoleucine–arginine tripeptide 

binds an allosteric pocket of Bp DTBS with strong, stable 

interactions and may induce a more compact monomeric structure. 

Such ligand-induced structural changes could hinder the formation 

of the enzyme’s active homodimer, offering a promising starting 

point for the development of peptide-based inhibitors against 

melioidosis. 

Conclusion 

Burkholderia pseudomallei, the causative agent of melioidosis, can 

readily acquire chromosomal antibiotic resistance, making 

infections difficult to treat. This study employed computer-assisted 
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drug discovery (CADDD) to identify potential inhibitors of B. 

pseudomallei dethiobiotin synthetase (Bp DTBS) from the 

COCONUT natural products database using ADMET prediction, 

pharmacophore-based virtual screening, and molecular docking. 

The majority of the top-ranked choices were short-chain peptides, 

which is in line with how natural host defence peptides work as 

antimicrobials. The leading tripeptide ligand, when docked with 

Bp DTBS and subjected to molecular dynamics simulation, 

showed stable binding, highly favorable interaction energies, and 

evidence of ligand-induced conformational changes that could 

hinder the formation of the enzyme’s active dimeric state. These 

findings highlight the tripeptide as a promising lead for anti-

melioidosis drug development. Further in vitro and in vivo 

validation, as well as structure-based optimization, are 

recommended to assess and enhance its therapeutic potential. 
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