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Abstract 

 
To treat Alzheimer’s Disease (AD), which is the most prevalent 

form of dementia, cholinesterase enzymes (AChE and BuChE) 

and amyloid-beta (Aβ) are attractive targets. In this work, 

different computational approach namely Density Functional 

Theory (DFT), Molecular Docking, and multi-QSAR modeling 

were performed on 22 donepezil-based derivatives which were 

reported as potent dual Aβ and (AChE and BuChE) inhibitors. 

The molecular geometries of the studied derivatives were carried 

out using GAUSSIAN 09 software with the level of theory (DFT, 

6/31g*). The dual inhibitors adopted minimum energy. The 

results pointed out the importance of the inhibitors' geometries in 

enzyme inhibition. The QSAR models elaborated by means of 

Molecular Operating Environment (MOE) package, showed good 

statistical values for targets AChE (R²adj = 0.976, q2 = 0.871, 

RMS = 0.130), BuChE (R²adj = 0.976, q2 = 0.554, RMS = 0.092) 

and Aβ (R²adj = 0.861, q2 = 0.525, RMS = 0.113). To identify 

the binding pattern between the ligands and target enzymes, we 

implemented molecular docking studies for the datasets. The 

obtained information was related to the essential structural 

features that were related to the QSAR of the predicted models.  

 

Keywords: Molecular docking, ButylCholinesterase, 

Quantitative structures activity relatioships, Acetylcholinesterase, 

Density functional theory, Donepezil 

Introduction  

The most common type of dementia is Alzheimer's Disease (AD) 

(Ronson, 2011; Uddin & Amran, 2018). AD affects over 44 

million people worldwide. By 2030, the number of patients will 

be doubled and even tripled by 2050 (Harris, 2019). The 

worldwide cost of dementia was estimated at 604 billion USD in 

2010 and is expected to increase exponentially. To tackle this 

problem, it is advisable to develop early detection methods and 

effective therapeutics (Tappen, 1997; Bamidis et al., 2020; 

Lilford & Hughes, 2020). AD may also affect patients with 

noncognitive disorders such as depression anxiety, hallucinations, 

and delusions (Vicente et al., 2015). Although AD pathogenesis 

is complex and unclear, there are several developed theories, but 

none of them revealed the specific cause of AD (Hardiman et al., 

2016; Lilford & Hughes, 2020). Common targets were identified 

and explored over the last two decades. The main hallmarks such 

as amyloid plaques (Lee, 2000; Ronson, 2011), peptide 

aggregates, the tau protein aggregates (Stonebrook, 2007; 

Sigurdsson et al., 2012) discovered in AD patient brains were 

correlated with most of these targets. AD development was 

affected by the role of cholinergic deficit (Banner & Nixon, 1992; 

Piguet & Poindron, 2012). Aβ peptides are APP (Amyloid 

Precursor Protein) proteolytic by-products that consist of 42 

(Aβ1−42) amino acids and40 (Aβ1−40). One of the strategies to 

cure AD is to block the generation of Aβ peptides aggregation. 

AChE, BuChE, and Aβ aggregation inhibitors emerged as 

effective tools for AD treatment. It was suggested that the 

effectiveness of the treatment was significantly improved by the 

dual inhibition strategy of these enzymes (Lajtha & Banik, 2001; 

Kuncharoenwirat et al., 2020; Sargazi & Taghian, 2020). The 

evaluations of in vitro Aβ aggregation inhibitors, progress, are 

time-consuming and labor extensive task. Computer-Aided Drug 

Design (CADD) (Kapetanovic, 2008) tools including molecular 

modeling in combination with Quantitative Structure-Activity 

Relationship (QSAR) (Li et al., 2019; Kasmi et al., 2020; 

Mahmud et al., 2020) and molecular docking (Roy et al., 2020) 

are used to evaluate a ligand activity and the kind of interactions 

into the protein active site (Taha & AlDamen, 2005). They 

provide useful tools for the design of new drugs to save time and 

money (Gu et al., 2021).  

The biological activity of donepezil as anti-Alzheimer diseases 

has been the subject of different investigations. Shamsi et al. 

(2020), with human transferrin, applied molecular docking, 

calorimetric, and spectroscopic insights into the role of donepezil 
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as an anti-Alzheimer’s drug. Aranda-Abreu et al. (2011) studied 

and discussed the absorption of donepezil after oral 

administration and compared it to tacrine. They found that 

donepezil was better tolerated by patients and caused fewer 

adverse reactions. Wallin et al. (2007) evaluated the results of 

three-year donepezil treatment and from their observation, the 

obtained results indicated a positive outcome in the routine 

clinical setting. To shed more light on donepezil derivatives as 

anti-Alzheimer’s drugs, we selected 22 derivatives (Table 1 and 

Figure 1) (Khosravan et al., 2017) and evaluated their 

cholinesterase enzymes (AChE and BuChE) inhibitory activity 

and amyloid-beta (Aβ) in silico (Yerdelen et al., 2015). 

Materials and Methods 

Dataset and Target Preparation 

The molecular optimized geometries of the 22 donepezil 

derivatives were optimized using the DFT/ B3LYP (Daramola et 

al., 2010). Functional hybrid, with the 6-31g* basis set was 

implemented in the Gaussian 09 software (Hiscocks & Frisch, 

2009), the stability of geometries was checked by the absence of 

the imaginary frequencies. The ligands properties (Table 1) were 

obtained by MOE software (Höltje, 2008; Kukol, 2008; Royal 

Society of Chemistry (Great Britain), 2014) results showed that 

the studied ligands were nontoxic, and the molecular weights 

were less than 500. The toxicity was done by MOE software.  

The X-ray crystal structures of the targets, AChE (PDB ID: 

1HBJ), BuChE (PDB ID: 4BDS), and Aβ (2BEG) were 

downloaded from the RCSB Database (http://www.rcsb.org/pdb). 

These three PDBs were chosen for modeling research since their 

crystal structures are in a condition that shows the 

pharmacological target for developing new drugs to treat AD. 

QSAR Modeling and Models Validations 

Biological Activities 

Acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), 

and Amyloid-beta (Aβ) inhibitory activities of a series of 22 

donepezil-like amide secondary derivatives were taken from 

Kadir et al.’s work (Yerdelen et al., 2015), each activity was 

mentioned as IC50(μM) for (AChE) and (BuChE), and as a 

percentage for Aβ inhibitory activity. Values were expressed as 

mean ± standard error of the mean of three independent 

experiments. Values were converted to pIC50 as pIC50= −log IC50. 

The dataset was divided into a training set containing 17 

compounds and a test set composed of 5 compounds (Table 1). 

Molecular Descriptors Generation 

Molecular descriptors were generated using MOE programs to 

predict the correlation between these parameters and their 

activities by developing a linear model (Partial Least Squares 

regression (PLS) (Wehrens & Mevik, 2007; Kovačević et al., 

2018). In this work, 12 QSAR models were developed (Tables 2) 

using the experimental IC50 data. Calculations were done using a 

total of 365 different descriptors exploited in the MOE software. 

These sets of descriptors were first pre-processed with a variance 

threshold of 0.0001 and passed through a correlation coefficient 

of 0.99 to eliminate correlations between the input descriptors 

and noise level. A Genetic Algorithm (GA) was applied to select 

the best possible set of descriptors for QSAR modeling from the 

pre-processed pool of descriptors. This "descriptor elucidation" 

procedure allowed us to select the four most significant 

descriptors to build our QSAR models which were: AChE 

(chi0v_C, PEOE_VSA_POL, vsurf_D5, vsurf_Wp4), Bthe (npr1, 

vsurf_CP, vsurf_CW4, vsurf_Wp6) and for Aβ (a_ICM, density, 

vsurf_HL1, vsurf_ID1). The identified descriptors were the most 

pertinent for our elucidation as they reflect the required activities 

of all the studied molecules, assuming that a change of the 

molecular structure modifies the inhibitory activity of donepezil 

derivatives.  

Regression Analysis 

Data fitting was accomplished using PLS regression analysis. 

When there are many independent variables in the trial descriptor 

pool relative to the number of the dependent variables, the pIC50 

endpoints, this data fitting technique becomes useful. When there 

is no method for ranking the individual members (molecular 

descriptors) of the trial descriptor pool and/or knowing possible 

inter-relationships among the training set of descriptors, the PLS 

is applied. Regression analysis was done by PLS method, because 

of the largest of the independent variables in the trial descriptor 

compared with the number of dependent variables, pIC50, our 

choice is justified because PLS is the best one as there is no 

method for ranking the individual members (descriptors) or 

distinguishing the inter-relationships between those descriptors. 

The PLS regression was used to build a single QSAR model that 

contains the entire trial descriptor pool. Both R2 and the leave-

one-out (LOO) cross-validated correlation coefficient, q2, were 

employed to characterize the quality of the resultant QSAR 

models. 

Molecular Docking Procedure 

Using MOE, molecular docking studies were done aiming to find 

the best conformation of the donepezil derivatives in protein 

binding sites. The downloaded 3D structures of the protein 

complexes were protonated, and energy minimized in an 

MMFF94x force field to a gradient of 0.0001 kcal/mol/Å (Engh 

& Huber, 1991). Using the MOE-Alpha Site finder, the active 

sites were generated. The dummy atoms were created from the 

obtained alpha spheres. Prepared protein structures are presented 

in Figure 2 for AChE, Bthe and Aβ prepared enzymes and the 

active sites are also presented. The 3D structures of all 

compounds were built by GaussView06, structures were 

optimized and saved as Mol Folders. Using the MOE program, 

the database set was created, and this database was used as input 

MOE-docking. We used the default settings of the parameters 

with Ligand Placement (Triangle Matcher) and Rescoring 

(London dG) implemented in the MOE program (Chemical 

Computing Group Inc, 2016). Furthermore, the LigX feature of 

MOE was used to find the hydrogen bonding interactions 
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between the ligand and receptor protein. The best docking scores 

were used for the calculation of binding energy. 

Results and Discussion 

DFT Calculations and QSAR Modeling 

To build the QSAR models, molecular geometries were 

optimized using the B3LYP/6-31g* and the database was created. 

The elaborated QSAR models (Tables) revealing the correlations 

between the AChE, BChE, and Aβ inhibitory activities, and the 

corresponding equations are also presented in the above tables. 

The terms were defined including NTraining the number of 

molecules in the training set, NTest the number of molecules in the 

test set, R²CV (Q2) the LOO cross-validated coefficient, RMSE the 

root mean square error, and R² the correlation coefficient. The 

absolute difference between the activity field and the value of the 

model is $Z-SCORE, which is divided by the square root of the 

mean square error of the data set. For the external validation, the 

values of R²test (correlation coefficient), RMSE test (Root Mean 

Square Error) were selected corresponding to the best models for 

each enzyme. 

R2 allowed us to compare the experimental and predicted studied 

activities, which is the protein inhibition. A good model must 

have a value of R2 above or equal to 0.5 whereas RMSE is mostly 

used to decide if the QSAR model possesses the predictive 

quality reflected in R2. It showed the error between the mean of 

the experimental values and the predicted properties. If RMSE is 

above 1 (RMSE ˃1), the model has a poor ability to foretell the 

properties even with a good R2 value. However, R2 and RMSE 

parameters are not sufficient to judge the QSAR validity, that is 

why cross-validation is required. Cross-validation R2cv is used to 

allow the determination of how large the model can be used for a 

random data set and to evaluate the predictive power of the 

model’s equation. On the other hand, the standardized value, 

which specifies the exact location of an X value within a 

distribution by describing its distance from the mean in terms of 

the standard deviation units is represented by XZSCORE and 

ZSCORE. This subset must be examined carefully to detect errors 

or to determine new descriptors to be calculated. ZSCORE must 

be less than 2.5 to suggest that the QSAR model is good to be 

used. Internal validation is not sufficient to estimate the 

predictive power of a QSAR mode.l. Golbraikh and Tropsha 

suggested (Golbraikh et al., 2003) the following statistical 

characteristics of the test set: correlation coefficient R between 

the predicted and observed activities, coefficients of 

determination (R2
test) the correlation between the predicted and 

the experimental inhibition activities are represented in Figure 3 

for AChE, BuChE, and Aβ respectively. They consider a QSAR 

valid model with R2
test > 0.6 taken as an indicator of good 

external predictability. 

To highlight the validity of our models for each enzyme as well 

as the chosen descriptors contributions on each activity, we 

calculated the statistical parameters shown in (Tables 2 and 

Figures 3) for the internal validation and correlation coefficients 

for the external validation (Figure 3). 

In the case of AChE, Table 1 and Figure 3 showed that among 

the four elaborated models, model number 2 demonstrated the 

best results with the value R2 = 0.88 and RMSE = 0.13. For the 

cross-validation and R2
CV = 0.58 with $Z-SCORE less than 2.5 

(0.6946 < ZS < 1.142), our results allowed us to confirm the 

correlation between the six selected descriptors (E_str; PM3_IP; 

PM3_LUMO; SMR_VSA2; SMR_VSA3; vsurf_Wp4) and the 

donepezil derivatives. AChE inhibition specified as IC50 

correlation plot between the predicted and experimental activities 

for AChE enzyme confirmed that model 2 is the best. Since the 

internal validation is insufficient to judge the model validity, we 

proceeded to an external validation using five molecules from the 

dataset which were not used in the model elaboration. Figure 3 

gave the values and correlations between the experimental and 

theoretical activities obtained for the five test molecules. Our 

results showed that the selected model 2 can be used to predict 

the donepezil derivatives activities. The residual values between 

our predicted values and the experimental ones varied from 

0.0013 to 0.1189. Those values are considered excellent values 

for the prediction of inhibitory activities. As indicated by Jalali-

Heravi and Kyani, we noted that the positive and negative values 

varying the residuals on both sides of zero showed that there was 

no systemic error (Jalali-Heravi & Kyani, 2004). To predict the 

pAChE inhibitory activities, this model can be applied 

successfully. The correlation coefficient between the predicted 

and experimental values is R2 = 0.96 and this value was also 

considered excellent.  

The selected descriptors chosen in the best model 2 suggested 

that E_str, PM3_LUMO, and vsurf_Wp4 were associated with a 

negative coefficient, indicating that increasing the value of these 

descriptors was unfavorable to the acetylcholinesterase inhibitory 

activity for each molecule PM3_IP, SMR_VSA2, and 

SMR_VSA3 descriptors that were associated with a positive 

coefficient suggesting that the inhibitory activity of the molecules 

increased with the increase of the approximate accessible van der 

Waals surface area of the molecule. The same conclusions could 

be made for the ionization potential of donepezil derivatives.  

In case of BuChE, Table 2 and plot 2 showed that among the four 

elaborated models, model number 6 is best model showing the 

best results with values of R2 = 0.74, RMSE = 0.09 and the cross-

validation correlation coefficient R2
CV = 0.55 with $Z-SCORE 

less than 2.5 (0.52 < ZS < 0.71). Between the six selected 

descriptors. E_oop, MNDO_dipole, vsurf_DD12, and the 

vsurf_ID4 were associated with negative coefficients, so an 

increase in these quantities decreased the inhibitory activities. 

The increase of the vsurf_HB3 and vsurf_ID3 corresponded to an 

increase of the inhibitory activity. These descriptors are useful in 

pharmacokinetic property prediction. The correlation plot 

between the predicted and experimental activities for the BuChE 

enzyme is presented in Figure 3 and it confirms that model 6 is 

the best one between the four established models. For the external 

validation, we used five molecules from the dataset which were 

not used in the model elaboration. Table 2 and plot 2 provided 
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the values and correlations between the experimental and 

theoretical activities obtained for the five tested molecules. Our 

outcomes revealed that the selected model 6 can be used to 

predict the donepezil derivatives inhibitory activities. The 

residual value between our predicted values and the experimental 

ones varied from 0.039 to 0.06. These values are also considered 

excellent values for the prediction of BuChE inhibitory activity. 

The correlation coefficient between the predicted and 

experimental values (plot) was R2
test = 0.95, which was also 

classified as an excellent value.  

In the case of Aβ, Table 2 and Figure 3 showed that among the 

four elaborated models, model number 11 is the best model with 

R2 = 0.76 and RMSE = 0.11. For the cross-validation and R2CV 

= 0.52 with $Z-SCORE less than 2.5 (0.01 < ZS < 2.3), our 

results allowed us to confirm the good correlation between the six 

selected descriptors (a_ICM; density; vsurf_HL1; vsurf_ID1; 

vsurf_ID2) and the Aβ inhibition by donepezil derivatives 

specified as IC50. All parameters were expressed with positive 

coefficients, suggesting that an increase in the values of these 

descriptors will lead to an increase in the inhibitory activity. The 

correlation plot between the predicted and experimental activities 

for the Aβ enzyme is presented in Figure 3 and it confirms that 

model 11 is the best. We also proceeded to an external validation 

using five molecules from the dataset which were not used in the 

model development. Table 2 and Figure 3 provided the values 

and correlations between the experimental and theoretical 

activities obtained for the five test molecules. Our results 

suggested that the selected model 11 can be used to predict the 

donepezil derivatives activities. The predicted values were very 

close to the experimental values and they were considered 

excellent values. The correlation coefficient between the 

predicted and experimental values (Figure 3) was R2 = 0.90, 

which was also considered an excellent value.  

Molecular Docking Simulation  

To prepare the enzymes, we identified the active site residues of 

both cholinergic and amyloid-beta targets, the active-site residues 

in AChE (Figures 4) are GLY118, GLY119, and ALA 201, 

which create the catalytic triad. The active-site residues for 

BuChE (Figures 4): HIS438, SER198, and GLU325. For the Aβ 

(Figures 4) the active site did not show the potent residues 

because the downloaded structure was not complexed with any 

reference ligand. All the prepared enzyme structures and the fixed 

sites are presented in Figures 4. 

Studies on molecular docking proceeded with the 22 molecules 

database designed by MOE. The AChE, BuChE, and Aβ protein-

ligand complexes were evaluated by estimating various types of 

interactions (non-polar and polar such as H-bonding interactions, 

electrostatic interactions, van der Waal’s interactions, 

hydrophobic interactions for ligands). The results indicated that 

the lowest docking score AChE (-8.1299 kcal/mol, ligand 4), 

BuChE (-7.0399 kcal/mol, ligand 14), and Aβ (-4.8651 kcal/mol, 

ligand 15) were the best docking score and other scores were 

calcified respecting this order (that all scores were calcified and 

the lowest founded for each enzyme was the one given). Figure 4 

showed the 2D Protein-ligand interaction maps for the 22 

molecules. The figure showed that the best dual ligands that gave 

good scores with the three studied targets and can be used as a 

model to design new dual inhibitors are ligand number 19 for 

AChE and BuChE duality and ligand number 15 for the BuChE 

and Aβ duality. 
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Figure 1. The Molecular Structures Corresponding to the 22 Ligands 

Table 1. Molecules Names and IC50 against AChE, BthE, and Aβ and obtained Ligands Properties using MOE of Compounds (1-22) 
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d) e) f) 

Figure 2. Downloaded Native Structures of the Enzymes and the Isolated Active Sites 

Table 2. Statistical Quality of QSAR Models Developed based on Different Division Tools for AChE, BuChE and Aβ 

Validation Metrics Model 1 Model 2 Model 3 Model 4 Threshold 

Internal 

AChE 
N Training 17 17 17 17  

 N Test 5 5 5 5  

 R2 0,83223 0,88363 0,87785 0,84621 > 0.5 

 RMSE 0.16298 0,13076 0,18035 0,28021  

 R2cv 0.68580 0.58241 0.679664 0.66739 > 0.5 

 $Z-SCORE 
1.9482 < ZS < 

1.3056 
0.6946 < ZS < 1.142 0.7767 < ZS < 1.0272 0.5046 < ZS < 2.0840 < 2.5 

External 

R2
test 0.9606 

RMSE test  0.9801    

Model 

Equation 
 

Ache pic50 = 

1.17613 

-0.14325 * chi0v_C 

+0.06162 * 

PEOE_VSA_POL 

-0.16995 * 

vsurf_Wp4 

Ache pic50 = 

-1.18719 

-0.15561 * E_str 

+0.29230 * PM3_IP 

-0.17014 * PM3_LUMO 

+0.09599 * SMR_VSA2 

+0.04150 * SMR_VSA3 

-0.13785 * vsurf_Wp4 

Ache pic50 = 

1.56209 

-0.13651 * E_str 

-0.17214 * PM3_LUMO 

+0.10080 * SMR_VSA2 

+0.02918 * SMR_VSA3 

-0.13451 * vsurf_Wp4 

Ache pic50 = 

-2.80053 

+0.17094 * MNDO_dipole 

+0.01555 * PEOE_VSA+0 

+0.06022 * 

PEOE_VSA_HYD 

+0.12946 * PEOE_VSA_POL 

-0.02129 * PEOE_VSA_POS 

-0.03965 * vdw_vol 

 

BuChE 

Validation Metrics Model 5 Model 6 Model 7 Model 8 Threshold 

Internal N Training 17 17 17 17  

 N Test 5 5 5 5  

 R2 0,69735 0,74745 0,70206 .71239 > 0.5 

 RMSE 0,09627 0,09220 0,09981 0,09170  

 R2cv 0.51263 0.55450 0.51057 0.53343 > 0.5 

 $Z-SCORE 0.4548<ZS<0.6322 0.7161<ZS<0.5254 0.4136<ZS<0.1081 0.5859<ZS<0.9151 < 2.5 

External 
R2

test0.9566 

RMSE test  0.9781    
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Model 

Equation 
 

Bthe pic50 = 

-1.95177 

-0.02273 * 

MNDO_dipole 

-0.04080 * 

vsurf_DD12 

-0.01469 * 

vsurf_HB3 

+0.15864 * 

vsurf_ID3 

+0.15076 * 

vsurf_ID4 

+0.01556 * 

vsurf_W3 

Bthe pic50 = 

-0.86927 

-0.03012 * E_oop 

-0.02579 * MNDO_dipole 

-0.04784 * vsurf_DD12 

+0.00154 * vsurf_HB3 

+0.42363 * vsurf_ID3 

-0.25670 * vsurf_ID4 

Bthe pic50 = 

-1.15305 

-0.01916 * E_ele 

+0.00508 * 

MNDO_dipole 

-0.04552 * vsurf_DD12 

+0.00060 * vsurf_HB3 

+0.06793 * vsurf_ID3 

+0.07737 * vsurf_ID4 

Bthe pic50 = 

-0.97705 

-1.79169 * npr1 

+1.09797 * vsurf_CP 

+1.14182 * vsurf_CW4 

-0.70721 * vsurf_Wp6 

 

Aβ 

Validation Metrics Model 9 Model 10 Model 11 Model 12 Threshold 

 

Internal 

N Training 17 17 17 17  

N Test 5 5 5 5  

R2 0,75408 0,75952 0,76745 0,74128 >0.5 

RMSE 0,11735 0,11516 0,11840 0,11386  

R2cv 0.49967 0.51508 0.52146 0.52535  

$Z-SCORE 2.10945<ZS<0.3466 2.0979<ZS<0.5309 1.3243<ZS<0.2875 2.3291<ZS<0.4602 <2.5 

External 
R2

test 0.9011 

RMSE test    0.9492  

Model 

Equation 
 

Aβpic50 = 

-1.42650 

-1.98824 * 

a_ICM 

+1.88270 * 

density 

+11.32901 * 

vsurf_HL1 

+0.25480 * 

vsurf_ID1 

+0.11959 * 

vsurf_ID6 

Aβpic50 = 

-1.42270 

-2.13016 * a_ICM 

+2.18384 * density 

+11.71892 * vsurf_HL1 

+0.68498 * vsurf_ID1 

-0.30229 * vsurf_ID2 

Aβpic50 = 

-2.00729 

-2.13629 * a_ICM 

+2.50472 * density 

+11.00672 * 

vsurf_HL1 

+0.41933 * vsurf_ID1 

+0.24070 * vsurf_ID8 

Aβpic50 = 

-1.49915 

-2.08249 * a_ICM 

+2.18037 * density 

+11.48446 * vsurf_HL1 

+0.40971 * vsurf_ID1 

 

 

 
a) Model 2 (AChE) 

 
b) Model 6 (BuChE) 
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c) Model 11(Aβ) 

Figure 3. Correlation Plots between Predicted and 

Experimental Activities Expressed pIC50for AChE, BuChE 

and Aβ 

 
Ligands Interactions Maps between the Best Ligands 

Scored Ligands and BuChE 

 
1Lig(14) 

 
2Lig(22) 

 
3Lig(15) 

 
4 Lig(19) 

 
5Lig(9) 

 
6Lig(10) 

Ligands Interactions Maps between the Best Ligands 
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Scored Ligands and Aβ 

 
1 lig(15) 

 
2 lig(8) 

 
3 lig(7) 

 
4 lig(2) 

 
5 lig(11) 

 
6 lig(14) 

Figure 4. Ligands Interactions Maps between the Best Ligands 

Scored Ligands and Enzymes 

 

 
a) 

 
b) 



59                                                                                                                                                        J Biochem Technol (2021) 12(2): 48-61 
 
 

 

 
c) 

 
d) 

 
e) 

 
f) 

Figure 5. Downloaded Native Structures of the Enzymes and 

the Isolated Active Sites 

Conclusion 

To develop anti‐Alzheimer’s therapies, the amyloid‐β and 

cholinergic pathways that lead to amyloid plaques are the main 

targets. The inhibitory activity and structure of a series of dual 

inhibitors of certain targets involved in these pathways are 

discussed in this work. Our results indicated that for the design of 

new dual drugs for Alzheimer’s disease one can take the 

donepezil derivatives as a basic structure, the combinations of the 

three structures found in our study as the best scored (AChE (-

8.1299 kcal/mol, ligand 4), BuChE (-7.0399 kcal/mol, ligand 14) 

and Aβ (-4.8651 kcal/mol, ligand 15), can lead us to the 

development of the new drug, on the other hand, the elaborated 

QSAR models for the three studied enzymes gave us an idea 

about what descriptors are the best for getting better ligands. The 

important descriptors are linked with the ionization potential and 

the surface and volume of the ligands. Our findings confirmed 

that the various computational tools combination gives 

supplementary information on the kind of interactions between 

enzyme ligands complex formation and ligands and active site 

residues, which is impossible experimentally. 
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Höltje, H. D. (2008). Molecular modeling: basic principles and 

applications. 3rd, rev. and expanded ed., Weinheim: 

Wiley-VCH. 

Jalali-Heravi, M., & Kyani, A. (2004). Use of computer-assisted 

methods for the modeling of the retention time of a variety 

of volatile organic compounds: a PCA-MLR-ANN 

approach. Journal of chemical information and computer 

sciences, 44(4), 1328-1335. 

Kapetanovic, I. M. (2008). Computer-aided drug discovery and 

development (CADDD): in silico-chemico-biological 

approach. Chemico-biological interactions, 171(2), 165-

176. 

Kasmi, R., Hadaji, E., Chedadi, O., El Aissouq, A., Bouachrine, 

M., & Ouammou, A. (2020). 2D-QSAR and docking study 

of a series of coumarin derivatives as inhibitors of CDK 

(anticancer activity) with an application of the molecular 

docking method. Heliyon, 6(8), e04514. 

Khosravan, A., Marani, S., & Googheri, M. S. S. (2017). The 

effects of fluorine substitution on the chemical properties 

and inhibitory capacity of Donepezil anti-Alzheimer drug; 

density functional theory and molecular docking 

calculations. Journal of Molecular Graphics and 

Modelling, 71, 124-134. 

Kovačević, S., Karadžić, M., Podunavac-Kuzmanović, S., & 

Jevrić, L. (2018). Binding affinity toward human prion 

protein of some anti-prion compounds—Assessment based 

on QSAR modeling, molecular docking and non-

parametric ranking. European Journal of Pharmaceutical 

Sciences, 111, 215-225. 

Kukol, A. (Ed.). (2008). Molecular modeling of proteins (Vol. 

443). Totowa, NJ: Humana Press. 

Kuncharoenwirat, N., Chatuphonprasert, W., & Jarukamjorn, K. 

(2020). Effects of Phenol Red On Rifampicin-Induced 

Expression of Cytochrome P450s Enzymes. 

Pharmacophore, 11(3), 13-20. 

Lajtha, A., & Banik, N. L. (2001). Role of proteases in the 

pathophysiology of neurodegenerative diseases. New 

York: Kluwer Academic/Plenum Publishers. xii, 302 p. 

Lee, V. M. Y. (2000). Fatal attractions: protein aggregates in 

neurodegenerative disorders. Research and perspectives in 

Alzheimer's disease. Berlin; New York: Springer. xii, 140 

p. 

Li, K., Zhu, J., Xu, L., & Jin, J. (2019). Rational Design of Novel 

Phosphoinositide 3‐Kinase Gamma (PI3Kγ) Selective 

Inhibitors: A Computational Investigation Integrating 

3D‐QSAR, Molecular Docking and Molecular Dynamics 

Simulation. Chemistry & Biodiversity, 16(7), e1900105. 

Lilford, P., & Hughes, J. C. (2020). Epidemiology and mental 

illness in old age. BJPsych Advances, 26(2), 92-103. 

Mahmud, A. W., Shallangwa, G. A., & Uzairu, A. (2020). QSAR 

and molecular docking studies of 1, 3-dioxoisoindoline-4-

aminoquinolines as potent antiplasmodium hybrid 

compounds. Heliyon, 6(3), e03449. 

Piguet, P., & Poindron, P. (2012). Genetically modified 

organisms and genetic engineering in research and 

therapy. BioValley monographs. Basel; New York: 

Karger. xiv, 123 p. 

Ronson, C. E. (2011). Alzheimer's Diagnosis. Nova Science 

Publishers. 

Roy, A., Rasheed, A., Sleeba, A. V., & Rajagopal, P. (2020). 

Molecular docking analysis of capsaicin with apoptotic 

proteins. Bioinformation, 16(7), 555-560. 

Royal Society of Chemistry (Great Britain). (2014). Faraday 

Division, Molecular simulations, and visualization: 

University of Nottingham, Nottingham UK. Faraday 

discussions. 535 pages. 

Sargazi, M., & Taghian, F. (2020). The Effect of Royal Jelly and 

Exercise on Liver Enzymes in Addicts. Archives of 

Pharmacy Practice, 11(2), 96-101. 

Shamsi, A., Al Shahwan, M., Ahamad, S., Hassan, M. I., Ahmad, 

F., & Islam, A. (2020). Spectroscopic, calorimetric and 

molecular docking insight into the interaction of 

Alzheimer’s drug donepezil with human transferrin: 

Implications of Alzheimer’s drug. Journal of Biomolecular 

Structure and Dynamics, 38(4), 1094-1102. 

Sigurdsson, E. M., Calero, M., & Gasset, M. (2012). Amyloid 

proteins: methods and protocols. 2nd ed. Methods in 

molecular biology. 2012, New York: Humana Press. xv, 

548 p. 

Stonebrook, M. J. (2007). Creutzfeldt-Jakob disease: new 

research. New York: Nova Biomedical Books. xi, 159 p. 

Taha, M. O., & AlDamen, M. A. (2005). Effects of variable 

docking conditions and scoring functions on corresponding 

protein-aligned comparative molecular field analysis 

models constructed from diverse human protein tyrosine 

phosphatase 1B inhibitors. Journal of medicinal 

chemistry, 48(25), 8016-8034. 

Tappen, R. M. (1997). Interventions for Alzheimer's disease: A 

caregiver's complete reference. Health Professions Press. 

Uddin, M., & Amran, M. (Eds.). (2018). Handbook of research 

on critical examinations of neurodegenerative disorders. 

IGI Global.  



61                                                                                                                                                        J Biochem Technol (2021) 12(2): 48-61 
 
 

 

Vicente, J. M. F., Álvarez-Sánchez, J. R., De la Paz López, F., 

Toledo-Moreo, F. J., & Adeli, H. (Eds.). (2015). Artificial 

computation in biology and medicine: international work-

conference on the interplay between natural and artificial 

computation, IWINAC 2015, Elche, Spain, June 1-5, 2015, 

Proceedings, Part I (Vol. 9107). Springer. 

Wallin, Å. K., Andreasen, N., Eriksson, S., Båtsman, S., Näsman, 

B., Ekdahl, A., Kilander, L., Grut, M., Rydén, M., Wallin, 

A., et al. (2007). Donepezil in Alzheimer’s disease: what to 

expect after 3 years of treatment in a routine clinical 

setting. Dementia and Geriatric Cognitive 

Disorders, 23(3), 150-160. 

Wehrens, R., & Mevik, B. H. (2007). The pls package: principal 

component and partial least squares regression in R. 

Journal of Statistical Software, 18(2), 1-23.  

Yerdelen, K. O., Koca, M., Anil, B., Sevindik, H., Kasap, Z., 

Halici, Z., Turkaydin, K., & Gunesacar, G. (2015). 

Synthesis of donepezil-based multifunctional agents for the 

treatment of Alzheimer’s disease. Bioorganic & Medicinal 

Chemistry Letters, 25(23), 5576-5582. 

 


