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Abstract 

The rapid spread and infection rate of novel severe acute 

respiratory syndrome coronavirus (SARS-CoV-2) has created a 

worldwide pandemic since its origin in 2019. Another concern for 

improvement in controlling the infection is the non-availability of 

effective medications against the virus. So, these challenges 

generate the general scientific interest to focus on the development 

of novel drug molecules that can prevent viral propagation. The 

virus contains an RNA helicase enzyme known as nonstructural 

protein 13 (nsp 13), a critical viral replication regulator. Hence this 

enzyme can be used as a target so that the potential inhibitor 

molecules can be used to stop its function. Furthermore, the virus 

is related to other members of the Coronaviridae family, for which 

inhibitor molecules are available. Recently, the crystallographic 

structure of the nsp13 of SARS-CoV-2 has been resolved and is 

available in the protein data bank (PDB). Hence, this information 

provides the opportunity to apply several computational and 

experimental approaches to elucidate the enzyme's functional 

aspects and help to propose new inhibitor molecules. Several 

natural products, synthetic compounds, and previously proven 

effective compounds have been studied for their binding affinity 

and inhibition properties of the molecule. This review presents the 

basic idea about the genomic arrangement and structural and 

functional aspects of the RNA helicase enzyme of SARS-CoV-2. 

Also, the inhibition strategies of the enzyme by the inhibitor 

molecules along with challenges have been highlighted by 

narrating the recent literature. 
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Introduction  

RNA viruses are usually more common and complex pathogens in 

terms of their genetic makeup, mutation frequency, and the modes 

of transmission to various host bodies to cause disease. Currently, 

there are about 180 species of RNA viruses have been recognized 

that can infect human beings (Andrei et al., 2015). RNA viruses 

have the potential to cross the species barrier between humans and 

other (animal and bird) hosts and are ultimately responsible for 

creating public health concerns (King et al., 2006; Woolhouse et 

al., 2013; Woolhouse & Adair, 2013). A recent challenge exists for 

the development of new therapeutics due to the epidemic outbreak 

of the novel coronavirus (SARS-CoV-2). The disease caused by 

the novel coronavirus is a highly contagious and infectious one, 

and it was first reported in Wuhan city of China, in December 2019 

and further spread worldwide (Aljehany & Allily, 2022). The virus 

is closely related to the other members of the coronaviridae family, 

such as the severe acute respiratory syndrome (SARS) virus and 

middle-eastern respiratory syndrome (MERS) spotted by the 

genomic analysis (Tudoran et al., 2022). Presently, there is no 

effective mode of a drug therapy approach that is successful for 

treating the novel coronavirus virus (Oran et al. 2021). Several 

successful research tests (clinical trials) for the SARS-CoV-2 

therapy are currently undergoing (Tam et al., 2022). Other 

emerging methods, such as repurposing the effective studied drugs, 

have been found as suitable alternatives to discover novel potential 

inhibitors against the virus (Omolo et al., 2020; Wu et al., 2020). 

The wild type of genomic constituent of the SARS-CoV-2 is 

positive-stranded RNA and contains 29903 base pairs (Figure 1).  

 
Figure 1. Genomic structure of SARS -CoV-2 highlighting 

the Helicase enzymes. 

The viral genome contains two major open reading frames (ORF 

1a and ORF 1b) from which the 16 numbers of nonstructural 

proteins were produced and the regions in which the four numbers 

of structural proteins are produced 
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(https://www.ncbi.nlm.nih.gov/sars-cov-2/). The major functions 

of the structural proteins are to facilitate the virus's entry into the 

host cell. The nonstructural proteins play a significant role in viral 

molecular processes such as replication, transcription, and 

assembly (Singh et al., 2021; Yadav et al., 2021). Among different 

types of nonstructural proteins, the nonstructural protein 13 is also 

known as (RNA) Helicases (Figure 1). This helicase's functional 

importance is that it acts as the motor protein that helps in the 

winding and unwinding activity of the RNA genome in the 

replication process by consuming adenosine triphosphate (ATP). 

Due to its vital role in replication, the enzyme is considered an 

important drug target for developing new therapeutic molecules to 

combat novel coronavirus infections (Mahajan & Marcus, 2021). 

Another essential nature of the enzyme is it is very much conserved 

and subjected to little mutational effect; hence can be considered 

for the development of stable inhibitor molecules. Developing 

novel therapeutic drugs has been extensively studied for other 

viruses (Ghosh & Basu, 2008; Steimer & Klostermeier, 2012; Kim 

et al., 2021). The therapeutic approaches have been developed for 

several viral pathogens such as Dengue, West Nile, and Japanese 

encephalitis virus, including SARS-CoV (severe acute respiratory 

syndrome-Coronavirus), including SARS-CoV-2 by considering 

the viral RNA helicases as a suitable target (Crumpacker & 

Schaffer, 2002; Kleymann et al., 2002; Frick, 2003). The review 

aims to highlight the structural and functional aspects of the SARS-

CoV-2 viral helicase enzyme and its inhibitors by reviewing the 

published literature.  

Structure and Function of NSP 13 Helicase Enzyme  

Nsp13 of SARS CoV-2 is a dimeric and multifunctional protein 

and is categorized as a superfamily 1 type of helicase. The enzyme 

generally contains an N-terminal metal-binding domain known as 

Zn binding domain (ZBD) and a conserved helicase domain in the 

C-terminal region. The molecular weight of the nsp13 protein of 

SARS-CoV-2 is 66.85 KDa and has a chain length of 601 amino 

acids. The domain structure is shown in Figure 1, and functional 

aspects are presented in Table 1.  

Table 1. Functional domains of SARS -CoV-2 helicase enzyme 

S. N Functional domain Function 

1 
ZINC Binding 

domain (ZBD) 

Interaction with other nonstructural 

proteins like nsp 12 and nsp 8 

2 Stalk domain 

Forms a rigid and direct connection 

between the ZBD and helicase domain 

and is essential for the unwinding of 

double-stranded RNA 

3 1B domain 

Binds to the 3′ ends of the single-

stranded RNA and remains attached to 

the Stalk domain 

4 
Helicase domain 

(Rec 1A and Rec 2A) 

Rec1A: Provides the surface to the 

RNA-binding tunnel of helicase 

enzyme by the formation of hydrogen-

bond with the ribose sugar and bases. 

 

Rec2A:  Dynamics of the Rec2A from 

the stalk domain enhance the space, 

which facilitates the accommodation of 

binding of the 5’ end of the single-

stranded RNA 

 

Nsp13 is strongly conserved among SARS -Co V2 and consists of 

five domains that fold in a triangular pyramid shape (Hao et al., 

2017; Chen et al., 2020; Littler et al., 2020; Kangarshahi et al., 

2021; Mickolajczyk et al., 2021). The first experimental SARS-

CoV-2 helicase structure was solved by Newman et al., with 1.94 

Angstrom resolution and available in the protein databank (PDB 

ID:6ZSL). It showed almost identical to the SARS-CoV helicase 

structure (PDB ID: 6JYT), however, both the dimeric structures 

differ significantly in the protein-protein interactions among their 

chains, represented in Figure 2 (Jia et al., 2019; Newman et al., 

2021). The availability of this structural information creates the 

opportunity to develop structure-based drug design by searching 

for the potential compounds against the enzyme (Davidescu et al., 

2022). Additionally, the information about the conformational 

change of the domains and their precise role upon binding of the 

substrate with the helicase enzyme has been established (Table 2). 

The viral replication mechanism of SARS-CoV-2 has been similar 

in the case of SARS-CoV and other related viral species (Khosla 

et al., 2021). For this reason, nsp13 of SARS-CoV-2 has been 

suggested as a preferred target for developing new antiviral drugs 

(Berta et al., 2021).  

 

a) 

 

b) 

Figure 2. 3D structure of helicase enzyme. a) SARS -CoV-2 

(PDB ID: 6ZSL)  and b) SARS -CoV (PDB ID: 6JYT). 

Dimeric interaction of the proteins has been computed by the 

PDBSUM server available at www. 

https://www.ebi.ac.uk/thornton-srv/databases/cgi-bin/pdbsum 

 

https://www.ebi.ac.uk/thornton-srv/databases/cgi-bin/pdbsum
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Table 2. Effective drug molecules against pathogenic viruses other than SARS-CoV-2 

S. N Target virus (Other than SARS-COV-2 Name of the compound References 

1 West Nile virus (WNV) 

Aminophenylbenzimidazole (Borowski et al., 2003) 

Benzothiazole 
(Ujjinamatada et al., 2005) 

Manoalide 

Tetrachlorobenzotriazole (TCBT) (Frick & Lam, 2006) 

2 Human papillomavirus (HPV) Doxycycline (Ko et al., 2014) 

3 Hepatitis C virus (HCV) 

Epigallocatechin-3-Gallate 

(EGCG) 
(Li et al., 2013) 

Fpa-124 (Shadrick et al., 2013) 

Myricetin (Frick, 2007) 

Pyrrolone (Borowski et al., 2000) 

Quercetin 

(Maga et al., 2005) Scutellarein 

Trifluoperazine 

4 
Severe acute respiratory syndrome coronavirus (SARS -

CoV) 
Ivermectin (Khater & Das, 2020) 

5 Human immunodeficiency virus (HIV) Micafungin (MCFG) (Yedavalli et al., 2008) 

6 Dengue virus (DENV) 

Suramin (Basavannacharya & Vasudevan, 2014) 

Tetrabromobenzotriazole (TBBT) (Briguglio et al., 2011) 

Tropolones (Mastrangelo et al., 2012) 

7 Herpes simplex virus (HSV) Pritelivir (Uhlig et al., 2021) 

 

Discovery of Drug Molecules Against SARS-CoV-2 Helicase  

Recently, attempts have been made to discover and develop novel 

potential antiviral agents by taking the SARS -CoV-2 helicase 

enzymes as the target. However, a more in-depth study related to 

helicase structure is needed to discover specific drug molecules 

with enhanced binding activities. The drug-binding sites of the 

helicase enzymes have been identified, and this can be taken as the 

strategy to develop the inhibitor against the Sar -CoV-2 (Figure 

3). Some of the compounds like tenofovir, disoproxil, and 

lamivudine have been predicted as effective replication inhibitors 

for the treatment of SARS-COV-2 (Das et al., 2020; Pandey et al., 

2020; Wondmkun & Mohammed, 2020). 

 

 
Figure 3. Strategies for inhibition of the viral RNA helicase enzyme by using potential drug molecules 
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To develop the possible inhibitors against SARS-CoV-2 RNA 

helicase, it is essential to know its conserveness among other 

related virus. Several researchers have conducted research to 

identify the potential inhibitor molecules against other pathogenic 

viruses (Table 2). Since most of the RNA helicases are conserved 

in nature, already available effective drug molecules can be 

suitable for repurposing against the SARS -CoV-2 nsp 13 target 

(Ma et al., 2022). Several published articles are also available that 

focus on the essential function of the RNA helicase in viral genome 

replication. also, the interaction of nsp13 with other nsps is 

responsible for the signaling pathway for the replication and RNA 

synthesis initiation (Appelberg et al., 2020; Xia et al., 2020; Yan 

et al., 2020; Yuen et al., 2020). Researchers have performed 

experimental and computational approaches to predict the effective 

SARS -CoV-2 helicase inhibitors. Mirza and Froeyen 2020 

analyzed the structural aspects of nbsp 13. They used 

computational techniques such as screening, pharmacological 

property evaluation, and molecular dynamics simulation to 

evaluate the effective compounds against the nbsp 13 of SARS-

CoV-2 (Mirza & Froeyen, 2020). Satpathy, in 2020, studied the 

effectiveness of the drug remdesivir molecule as a potential nsp13 

inhibitor by using molecular docking methods (Satpathy, 2020). 

Iftikhar et al. analyzed the key binding sites of the nsp13 helicase 

of SARS-CoV-2 with nucleotide. Further molecular modeling 

techniques such as 3D structure prediction and molecular docking 

showed that the anti-parasitic drug molecule such as 

meclonazepam and oxiphenisatin could bind to the key residues, 

hence can interfere with RNA helicase enzyme activity (Iftikhar et 

al., 2020). White et al., in 2020, screened about 970,000 chemical 

compounds based on their binding to the ATP-binding site of the 

SARS-CoV-2 helicase enzyme by using computational methods. 

A molecular docking study revealed that the compounds 

likeCepharanthine, Cefoperazone, Dihydroergotamine, 

Cefpiramide, Ergoloid, Dihydroergocristine, Ergotamine, 

Netupitant, Dpnh, Lifitegrast, Nilotinib, and Tubocurarin show the 

effective ATP site binding activity (White et al., 2020). Shu et al. 

analyzed that the Bismuth salt can be considered the key inhibitory 

agent of the NTPase and helicase activities of the SARS-CoV-2 

helicase enzyme (Shu et al., 2020). El-Sayed et al. repurposed the 

effective drugs of SARS-CoV, such as Ledipasvir and Galidesivir 

could be effective against the helicase of novel coronavirus disease 

2019 (El-Sayed et al., 2021). Wu et al. in 2021 used computational 

screening methods to predict the effectiveness of the drugs like 

lymecycline, itraconazole, saquinavir, dabigatran, and carnosic 

acid as potential helicase inhibitors (Wu et al., 2020). Yuan et al. 

investigated the inhibition of the unwinding effect of SARS-CoV-

2 helicase (nsp13) by using the drug molecule clofazimine during 

the replication process (Yuan et al., 2021). Nandi et al. screened 

the effect of a series of nucleoside analogs against the SARS-CoV-

2 helicase protein using molecular docking and molecular 

dynamics simulation methods. After the selection of the best 

inhibitor, further, the pharmacokinetic study revealed that the 

molecules cordycepin and pritelivir show a good inhibitory effect 

against the nsp13 helicase protein (Nandi et al., 2022). The 

computational analysis was performed by Hosseini et al. to 

investigate the multiple targeting of drug molecules against the 

SARS-CoV-2 proteins. A molecular docking study established that 

the protease inhibitor molecule natamycin is also a potential 

SARS-CoV-2 helicase enzyme (Hosseini et al., 2021). Molecular 

docking simulation and molecular dynamics simulation study by 

Saidijam et al. predicted that the molecules such as 

Amentoflavone, theaflavin 3'-gallate, and procyanidin can be the 

potential SARS-CoV-2 helicase inhibitors (Saidijam et al., 2021). 

Spratt et al. suggested the use of some patented key drug molecules 

such as SSYA10-001, aryl keto acids, dihydroxy chromones, 

adamantane-derived bananas, natural flavonoids, acrylamide 

derivatives can be used as SARS-CoV-2 helicase inhibitors. This 

fact was supported by the computation of the IC50 value of these 

molecules obtained from the experimental SARS-CoV-2 helicase 

assay (Spratt et al., 2021). Zeng et al. screened a library of 5000 

pharmaceutically important compounds for nsp13 inhibitors of the 

virus by using fluorescence resonance energy transfer (FRET) 

techniques. From the in vitro study, they have identified that 

molecules such as FPA-124 and several suramin-related 

compounds were able to decrease the growth of SARS-CoV-2 in 

Vero E6 cell culture (Zeng et al., 2021). Abidi et al. studied the 

possibility of repurposing the drug molecules such as posaconazole 

and grazoprevir as the key inhibitors of the helicase enzyme of 

SARS-CoV-2 (Abidi et al., 2021). Chen et al. used virtual 

screening methods and identified that some of the approved drugs, 

such as lymecycline, itraconazole, saquinavir, dabigatran, and 

carnosic acid could be used as helicase inhibitors of the SARS-

CoV-2 helicase (Chen et al., 2021). Chen et al. studied the effect 

of the molecules such as disulfiram and ebselen were able to inhibit 

SARS-CoV-2 nsp13 ATPase activity (Chen et al., 2021). Perez-

Lemus et al. suggested that the molecules like bananin, SSYA10-

001, and chromone-4c can be used for blocking the ATPase 

activity of the nsp13 helicase after their binding (Perez-Lemus et 

al., 2022). Pharmacophore modeling and screening of the ZINC 

database by El Hassab et al. suggested that the best-hit 

compound FWM-1 is a potential nsp13 helicase inhibitor (El 

Hassab et al., 2022). Protein-ligand docking followed by 

interaction analysis of the complex and molecular dynamics 

simulation work by Vivek-Ananth et al. predicted that, that the 

phytochemicals such as Picrasidine M, Epiexcelsin, Isorhoeadine, 

Euphorbetin, and Picrasidine N can be used as effective SARS-

CoV-2 helicase inhibitors (Vivek-Ananth et al., 2022). Recently, 

Raubenolt et al. studied the dynamics of the binding site of the nsp 

1 protein structures by extensive molecular dynamics simulation 

analysis. In this research work, they identified that four numbers 

of potential drug-binding pockets are available between the 1A and 

2A regions of the helicase domain. Also, they predicted three 

numbers of allosteric binding sites between the ZBD-stalk, stalk-

1B, and 1A-2A domains, which was not previously reported in the 

case of helicase enzyme. Therefore, this information can be used 

further to discover novel inhibitor molecules targeting these 

locations (Raubenolt et al., 2022). Corona et al. implemented an 

integrated mode of study by using virtual screening and molecular 

dynamics simulation methods to identify the key binding sites. 

Further, the binding mode was predicted by determining the 

favorable molecular interaction of ligand molecules with the nsp 

13 protein. In the study, it was identified that the molecules such 

as myricetin, quercetin, kaempferol, and flavanone are the 

potential SARS-CoV-2 inhibitor that inhibits the nsp13 enzyme by 

interfering with the unwinding activity by non-competitive 

inhibition activity. Also, the researchers reported that natural 
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compounds such as flavonoids could be used as selective inhibitors 

of SARS-CoV-2 nps13 helicase (Corona et al., 2022). 

Challenges and Future Aspects  

Repurposing existing drug molecules against the SARS-CoV-2 

helicase enzyme can be a crucial and rapid method to predict novel 

antiviral compounds against the virus. The current approach to the 

drug screening process against SARS-CoV-2 is mainly based on 

computer-aided drug design (CADD) or a few previously approved 

antiviral drugs against wild-type SARS-CoV-2. However, the 

methods may encounter several limitations. For example, the 

CADD method is primarily used to screen drug molecules for a 

single or multiple virus target without considering the whole life 

cycle of the virus. This process may result in missing a large 

number of potential drug molecules. Also, few compounds are 

known for which the clinical knowledge of inhibitory activity 

against SARS-CoV-2 nsp 13 is available (Pathak et al., 2021). 

Hence, a combined approach of high-throughput screening along 

with a suitable infection model is necessary to accelerate the drug 

discovery study against the SARS-CoV-2 helicase enzyme 

(Aljabali et al., 2022; Malone et al., 2022; Siminea et al., 2022). 

However, the research opportunities and challenges in this aspect 

are presented below:  

 Most of the predicted compounds are based on a 

computational approach, but the inhibitory concentration in 

the in vitro and in vivo assay methods shows a large variation 

in the concentration range. 

 The pharmacokinetics data obtained from the compounds 

may not be correlated with the in vivo parameters.   

 The recently reported structure of SARS-CoV-2 helicase can 

be studied for its association with other nsps like nsp12, 

nsp7, and nsp8. Also, the structural information from other 

CoVs can be thoroughly studied to discover the potential 

binding site related to function. So this will lead to the 

discovery of a novel target of the helicase enzyme for which 

the drug molecule can be developed (Dumitru et al., 2022). 

 The role of dimerization of the helicase enzyme is less 

understood; more study regarding the structural approach is 

necessary to understand the function and dynamics. 

 Although many effective drug molecules have been 

screened and predicted by several researchers, there is no 

such unique database of Viral RNA helicase inhibitors 

available to date. So, the information on the drug molecule, 

along with the other structural information for the scientific 

community, might be useful to repurpose novel compounds 

against any pathogenic virus. 

 

Conclusion  

 

The infection caused by SARS-CoV-2 has resulted in pandemic 

situations throughout the globe, hence a great concern for public 

health. However, no such proper therapeutic methods are available 

to fight against the virus. The continuous mutation in the genome 

is also another challenge to developing drugs against the virus. 

However, nsps like nbsp 13 are more conserved and play a crucial 

role in the viral replication cycle by combination with other 

nonstructural proteins. Hence, the enzyme can be used as an 

attractive drug target. The high-resolution crystallographic 

structure of nsp 13 helicase is recently available, providing the 

opportunity to develop suitable nsp 13 helicase inhibitors of SARS 

-CoV-2. Several researchers have predicted many of these 

potential compounds using computational and experimental 

methods. In this review, the structural and functional aspects of the 

nbsp 13 of SARS-CoV-2 have been presented. The potential 

compounds against the nsp 13 helicase enzyme of SARS-CoV-2 

have been listed by reviewing the recent literature. Further, we 

present the challenges and research opportunities associated with 

discovering inhibitor molecules against nsp 13 of the virus. The 

information available in the manuscript may be used to carry out 

further research in this emerging area.   
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