A possible role of repair proteins BRCA1 and DNA-PK in the processing of oxidative DNA damage

Alexandros G Georgakilas

Abstract

BRCA1 and DNA-PK are two significant multifunctional proteins involved primarily in the processing of double strand breaks (DSBs). BRCA1 participates actively in homologous recombination (HR) while DNA-PK in non-homologous end joining (NHEJ). In this mini review, we discuss all recent evidence for a possible involvement of these repair proteins also in the processing of oxidatively-induced DNA damage.

BRCA1 and DNA-PK involvement in the processing of DSBs

DSBs are considered highly genotoxic DNA lesions because they can potentially lead to chromosomal breakage (Burma et al. 2006). DSBs can arise as the result of exposure to exogenous sources like natural and medical radiation or other environmental exposures to chemicals, when chromosomes exchange genetic material in preparation for cell division and finally endogenously either by free radicals that emerge as byproducts of normal cellular metabolism or as repair intermediates during the processing of clustered DNA lesions (Georgakilas 2008). Two major pathways have been implicated in the processing of DSBs: non-homologous end joining (NHEJ) and homologous recombination repair (HR) (Kanaar et al. 1998). One of the key protein complexes in the NHEJ pathway is the DNA-PK holoenzyme consisting of the Ku70/80 heterodimer and the catalytic subunit of DNA-PKcs (Meek et al. 2004). The central role of DNA-PK in the processing of DSBs is underlined by several studies showing a severe radiosensitivity and decreased DSB repair in cells with compromised DNA-PK activity or reduced expression of the protein (DiBiase et al. 2000; Peng et al. 2002; Salles et al. 2006). The BRCA1 gene is located on the long (q) arm of chromosome 17 at position 21 and provides instructions for making the corresponding protein that is directly involved in repairing DSBs through HR repair (Holt et al. 1996; Zhong et al. 1999). Interestingly, deficiencies of both proteins (DNA-PK and BRCA1) have been associated with elevated breast (Yu et al. 2001; Fu et al. 2003) or ovarian cancer risk (Futreal et al. 1994; Turner et al. 2006).

An alternative role of BRCA1 and DNA-PKcs in the processing of oxidative DNA lesions

Recent evidence from our laboratory suggests an additional and alternative role of these two traditional DSB repair proteins in the processing of non-DSB lesions induced by oxidative stress (base damage and single strand breaks-SSBs) (Francisco et al. 2008; Peddi et al. 2008; Peddi et al. 2008). In support of this idea, several other laboratories have shown a compromised repair of non-DSB oxidative DNA damage in cells or tissues with DNA-PK or BRCA1 deficiencies. Rodriguez et al. have recently shown a deficient processing of oxidative DNA lesions in lymphoblasts from women with BRCA1 mutations. Additional support for the role of BRCA1 in DNA DSB repair and potentially oxidative lesions, comes from the finding that BRCA1 plays a coordinator role of multiple activities required for maintenance of genomic integrity interacting with various DNA damage repair proteins like MSH2, RAD51, ATM, BLM and RAD50-MRE11-NBS1 (Zhong et al. 1999; Wang et al. 2000) and actively participates in transcription coupled repair (Le Page et al. 2000). Reduced levels of DNA-PKcs maybe compromising the processing of base damages through base excision repair (BER) since DNA-PKcs has been shown recently to interact with many BER proteins suggested actually forming a repairsome (Levy et al. 2006; Parlanti et al. 2007) i.e., direct effect. Another possible explanation can be the strong inhibitory action of existing SSBs (forming a DSB) towards the processing of neighboring base damages i.e., indirect effect. Many in vitro studies suggest that the existence of a single SSB can significantly inhibit or delay the processing of opposing base damages (Dianov et al. 2001).
Conclusion

Accumulating evidence from different laboratories suggests an alternative (direct or indirect) effect of \textit{BRCA1} and DNA-PK in the processing of oxidatively-induced DNA damage like abasic sites, altered bases and/or single strand breaks. This potential function of these proteins in the repair of non-DSB DNA lesions in addition to their verified involvement in the repair of DSBs, raises significant issues in the predisposition of individuals to several diseases like breast and ovarian cancer since both of these genes have been involved in increased breast or ovarian cancer susceptibility.

References

Burma S, Chen BPC, Chen DJ (2006) Role of non-homologous end joining (NHEJ) in maintaining genomic integrity. DNA Repair 5:1042-1048

